Whakaoti mō A
A=\frac{ey-\pi x}{xy}
x\neq 0\text{ and }y\neq 0
Whakaoti mō x
x=\frac{ey}{Ay+\pi }
y\neq 0\text{ and }\left(A=0\text{ or }y\neq -\frac{\pi }{A}\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
ye-x\pi =Axy
Me whakarea ngā taha e rua o te whārite ki te xy, arā, te tauraro pātahi he tino iti rawa te kitea o x,y.
Axy=ye-x\pi
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
Axy=-\pi x+ey
Whakaraupapatia anō ngā kīanga tau.
xyA=ey-\pi x
He hanga arowhānui tō te whārite.
\frac{xyA}{xy}=\frac{ey-\pi x}{xy}
Whakawehea ngā taha e rua ki te xy.
A=\frac{ey-\pi x}{xy}
Mā te whakawehe ki te xy ka wetekia te whakareanga ki te xy.
A=\frac{e}{x}-\frac{\pi }{y}
Whakawehe ey-\pi x ki te xy.
ye-x\pi =Axy
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te xy, arā, te tauraro pātahi he tino iti rawa te kitea o x,y.
ye-x\pi -Axy=0
Tangohia te Axy mai i ngā taha e rua.
-x\pi -Axy=-ye
Tangohia te ye mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(-\pi -Ay\right)x=-ye
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\left(-Ay-\pi \right)x=-ey
He hanga arowhānui tō te whārite.
\frac{\left(-Ay-\pi \right)x}{-Ay-\pi }=-\frac{ey}{-Ay-\pi }
Whakawehea ngā taha e rua ki te -\pi -yA.
x=-\frac{ey}{-Ay-\pi }
Mā te whakawehe ki te -\pi -yA ka wetekia te whakareanga ki te -\pi -yA.
x=\frac{ey}{Ay+\pi }
Whakawehe -ye ki te -\pi -yA.
x=\frac{ey}{Ay+\pi }\text{, }x\neq 0
Tē taea kia ōrite te tāupe x ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}