Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Whakaoti mō d (complex solution)
Tick mark Image
Whakaoti mō d
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}(y)}{\mathrm{d}y}d^{2}yx=1-\frac{1}{\sqrt{2}}
Whakareatia te d ki te d, ka d^{2}.
\frac{\mathrm{d}(y)}{\mathrm{d}y}d^{2}yx=1-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Whakangāwaritia te tauraro o \frac{1}{\sqrt{2}} mā te whakarea i te taurunga me te tauraro ki te \sqrt{2}.
\frac{\mathrm{d}(y)}{\mathrm{d}y}d^{2}yx=1-\frac{\sqrt{2}}{2}
Ko te pūrua o \sqrt{2} ko 2.
2\frac{\mathrm{d}(y)}{\mathrm{d}y}d^{2}yx=2-\sqrt{2}
Whakareatia ngā taha e rua o te whārite ki te 2.
2yd^{2}x=2-\sqrt{2}
He hanga arowhānui tō te whārite.
\frac{2yd^{2}x}{2yd^{2}}=\frac{2-\sqrt{2}}{2yd^{2}}
Whakawehea ngā taha e rua ki te 2d^{2}y.
x=\frac{2-\sqrt{2}}{2yd^{2}}
Mā te whakawehe ki te 2d^{2}y ka wetekia te whakareanga ki te 2d^{2}y.