Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}-2x-x+2\right)\left(x-3\right))
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x-1 ki ia tau o x-2.
\frac{\mathrm{d}}{\mathrm{d}x}(\left(x^{2}-3x+2\right)\left(x-3\right))
Pahekotia te -2x me -x, ka -3x.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-3x^{2}-3x^{2}+9x+2x-6)
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x^{2}-3x+2 ki ia tau o x-3.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-6x^{2}+9x+2x-6)
Pahekotia te -3x^{2} me -3x^{2}, ka -6x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(x^{3}-6x^{2}+11x-6)
Pahekotia te 9x me 2x, ka 11x.
3x^{3-1}+2\left(-6\right)x^{2-1}+11x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
3x^{2}+2\left(-6\right)x^{2-1}+11x^{1-1}
Tango 1 mai i 3.
3x^{2}-12x^{2-1}+11x^{1-1}
Whakareatia 2 ki te -6.
3x^{2}-12x^{1}+11x^{1-1}
Tango 1 mai i 2.
3x^{2}-12x^{1}+11x^{0}
Tango 1 mai i 1.
3x^{2}-12x+11x^{0}
Mō tētahi kupu t, t^{1}=t.
3x^{2}-12x+11\times 1
Mō tētahi kupu t mahue te 0, t^{0}=1.
3x^{2}-12x+11
Mō tētahi kupu t, t\times 1=t me 1t=t.