Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}x}(\left(8x^{6}\right)^{2}-\left(9x^{10}\right)^{2})
Whakaarohia te \left(8x^{6}-9x^{10}\right)\left(8x^{6}+9x^{10}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(8^{2}\left(x^{6}\right)^{2}-\left(9x^{10}\right)^{2})
Whakarohaina te \left(8x^{6}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(8^{2}x^{12}-\left(9x^{10}\right)^{2})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 6 me te 2 kia riro ai te 12.
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-\left(9x^{10}\right)^{2})
Tātaihia te 8 mā te pū o 2, kia riro ko 64.
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-9^{2}\left(x^{10}\right)^{2})
Whakarohaina te \left(9x^{10}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-9^{2}x^{20})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 10 me te 2 kia riro ai te 20.
\frac{\mathrm{d}}{\mathrm{d}x}(64x^{12}-81x^{20})
Tātaihia te 9 mā te pū o 2, kia riro ko 81.
12\times 64x^{12-1}+20\left(-81\right)x^{20-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
768x^{12-1}+20\left(-81\right)x^{20-1}
Whakareatia 12 ki te 64.
768x^{11}+20\left(-81\right)x^{20-1}
Tango 1 mai i 12.
768x^{11}-1620x^{20-1}
Whakareatia 20 ki te -81.
768x^{11}-1620x^{19}
Tango 1 mai i 20.