Aromātai
3\left(10x^{2}-5x+8\right)x^{3}
Kimi Pārōnaki e ai ki x
6x^{2}\left(25x^{2}-10x+12\right)
Tohaina
Kua tāruatia ki te papatopenga
4\times 6x^{4-1}+5\left(-3\right)x^{5-1}+6\times 5x^{6-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
24x^{4-1}+5\left(-3\right)x^{5-1}+6\times 5x^{6-1}
Whakareatia 4 ki te 6.
24x^{3}+5\left(-3\right)x^{5-1}+6\times 5x^{6-1}
Tango 1 mai i 4.
24x^{3}-15x^{5-1}+6\times 5x^{6-1}
Whakareatia 5 ki te -3.
24x^{3}-15x^{4}+6\times 5x^{6-1}
Tango 1 mai i 5.
24x^{3}-15x^{4}+30x^{6-1}
Whakareatia 5 ki te -3.
24x^{3}-15x^{4}+30x^{5}
Tango 1 mai i 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}