Aromātai
\frac{144}{x^{7}}+\frac{600}{x^{11}}+\frac{240}{x^{17}}
Kimi Pārōnaki e ai ki x
-\frac{1008}{x^{8}}-\frac{6600}{x^{12}}-\frac{4080}{x^{18}}
Tohaina
Kua tāruatia ki te papatopenga
\left(3x^{-6}+12\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{-10}-8)+\left(-5x^{-10}-8\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{-6}+12)
Mo ētahi pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te hua o ngā pānga e rua ko te pānga tuatahi whakareatia ki te pārōnaki o te pānga tuarua tāpiri i te pānga tuarua whakareatia ki te pārōnaki o te mea tuatahi.
\left(3x^{-6}+12\right)\left(-10\right)\left(-5\right)x^{-10-1}+\left(-5x^{-10}-8\right)\left(-6\right)\times 3x^{-6-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\left(3x^{-6}+12\right)\times 50x^{-11}+\left(-5x^{-10}-8\right)\left(-18\right)x^{-7}
Whakarūnātia.
3x^{-6}\times 50x^{-11}+12\times 50x^{-11}+\left(-5x^{-10}-8\right)\left(-18\right)x^{-7}
Whakareatia 3x^{-6}+12 ki te 50x^{-11}.
3x^{-6}\times 50x^{-11}+12\times 50x^{-11}-5x^{-10}\left(-18\right)x^{-7}-8\left(-18\right)x^{-7}
Whakareatia -5x^{-10}-8 ki te -18x^{-7}.
50\times 3x^{-6-11}+50\times 12x^{-11}-5\left(-18\right)x^{-10-7}-8\left(-18\right)x^{-7}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
150x^{-17}+600x^{-11}+90x^{-17}+144x^{-7}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}