Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{2}}{\left(\sqrt{x+3}\right)^{2}})
Kia whakarewa i te \frac{1}{\sqrt{x+3}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(\sqrt{x+3}\right)^{2}})
Tātaihia te 1 mā te pū o 2, kia riro ko 1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+3})
Tātaihia te \sqrt{x+3} mā te pū o 2, kia riro ko x+3.
-\left(x^{1}+3\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)
Mēnā ko F te hanganga o ngā pānga e rua e taea ana te pārōnaki f\left(u\right) me u=g\left(x\right), arā, mēnā ko F\left(x\right)=f\left(g\left(x\right)\right), ko te pārōnaki o F te pārōnaki o f e ai ki u whakareatia te pārōnaki o g e ai ki x, arā, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{1}+3\right)^{-2}x^{1-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
-x^{0}\left(x^{1}+3\right)^{-2}
Whakarūnātia.
-x^{0}\left(x+3\right)^{-2}
Mō tētahi kupu t, t^{1}=t.
-\left(x+3\right)^{-2}
Mō tētahi kupu t mahue te 0, t^{0}=1.