Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{2t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(t^{2}-1)-\left(t^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}t}(2t^{1})}{\left(2t^{1}\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{2t^{1}\times 2t^{2-1}-\left(t^{2}-1\right)\times 2t^{1-1}}{\left(2t^{1}\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{2t^{1}\times 2t^{1}-\left(t^{2}-1\right)\times 2t^{0}}{\left(2t^{1}\right)^{2}}
Mahia ngā tātaitanga.
\frac{2t^{1}\times 2t^{1}-\left(t^{2}\times 2t^{0}-2t^{0}\right)}{\left(2t^{1}\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2\times 2t^{1+1}-\left(2t^{2}-2t^{0}\right)}{\left(2t^{1}\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{4t^{2}-\left(2t^{2}-2t^{0}\right)}{\left(2t^{1}\right)^{2}}
Mahia ngā tātaitanga.
\frac{4t^{2}-2t^{2}-\left(-2t^{0}\right)}{\left(2t^{1}\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(4-2\right)t^{2}-\left(-2t^{0}\right)}{\left(2t^{1}\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{2t^{2}-\left(-2t^{0}\right)}{\left(2t^{1}\right)^{2}}
Tango 2 mai i 4.
\frac{2\left(t^{2}-\left(-t^{0}\right)\right)}{\left(2t^{1}\right)^{2}}
Tauwehea te 2.
\frac{2\left(t^{2}-\left(-t^{0}\right)\right)}{2^{2}t^{2}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
\frac{2\left(t^{2}-\left(-t^{0}\right)\right)}{4t^{2}}
Hīkina te 2 ki te pū 2.
\frac{2\left(t^{2}-\left(-1\right)\right)}{4t^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.