Aromātai
\frac{1}{2}+\frac{1}{2t^{2}}
Kimi Pārōnaki e ai ki t
-\frac{1}{t^{3}}
Pātaitai
Differentiation
5 raruraru e ōrite ana ki:
\frac { d } { d t } ( \frac { t ^ { 2 } - 1 } { 2 t } )
Tohaina
Kua tāruatia ki te papatopenga
\frac{2t^{1}\frac{\mathrm{d}}{\mathrm{d}t}(t^{2}-1)-\left(t^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}t}(2t^{1})}{\left(2t^{1}\right)^{2}}
Mō ngā pānga e rua e taea ana te pārōnaki, ko te pārōnaki o te otinga o ngā pānga e rua ko te tauraro whakareatia ki te pārōnaki o te taurunga tango i te taurunga whakareatia ki te pārōnaki o te tauraro, ā, ka whakawehea te katoa ki te tauraro kua pūruatia.
\frac{2t^{1}\times 2t^{2-1}-\left(t^{2}-1\right)\times 2t^{1-1}}{\left(2t^{1}\right)^{2}}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{2t^{1}\times 2t^{1}-\left(t^{2}-1\right)\times 2t^{0}}{\left(2t^{1}\right)^{2}}
Mahia ngā tātaitanga.
\frac{2t^{1}\times 2t^{1}-\left(t^{2}\times 2t^{0}-2t^{0}\right)}{\left(2t^{1}\right)^{2}}
Whakarohaina mā te āhuatanga tohatoha.
\frac{2\times 2t^{1+1}-\left(2t^{2}-2t^{0}\right)}{\left(2t^{1}\right)^{2}}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
\frac{4t^{2}-\left(2t^{2}-2t^{0}\right)}{\left(2t^{1}\right)^{2}}
Mahia ngā tātaitanga.
\frac{4t^{2}-2t^{2}-\left(-2t^{0}\right)}{\left(2t^{1}\right)^{2}}
Tangohia ngā taiapa kāore i te hiahiatia.
\frac{\left(4-2\right)t^{2}-\left(-2t^{0}\right)}{\left(2t^{1}\right)^{2}}
Pahekotia ngā kīanga tau ōrite.
\frac{2t^{2}-\left(-2t^{0}\right)}{\left(2t^{1}\right)^{2}}
Tango 2 mai i 4.
\frac{2\left(t^{2}-\left(-t^{0}\right)\right)}{\left(2t^{1}\right)^{2}}
Tauwehea te 2.
\frac{2\left(t^{2}-\left(-t^{0}\right)\right)}{2^{2}t^{2}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
\frac{2\left(t^{2}-\left(-t^{0}\right)\right)}{4t^{2}}
Hīkina te 2 ki te pū 2.
\frac{2\left(t^{2}-\left(-1\right)\right)}{4t^{2}}
Mō tētahi kupu t mahue te 0, t^{0}=1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}