Aromātai
-\frac{100d}{7d_{2}}
Whakaroha
-\frac{100d}{7d_{2}}
Pātaitai
Differentiation
\frac { d } { d 2 } ( \frac { 2 ^ { 3 } } { 2 } - \frac { 2 ^ { 7 } } { 7 } ) =
Tohaina
Kua tāruatia ki te papatopenga
\frac{d}{d_{2}}\left(2^{2}-\frac{2^{7}}{7}\right)
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 1 i te 3 kia riro ai te 2.
\frac{d}{d_{2}}\left(4-\frac{2^{7}}{7}\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{d}{d_{2}}\left(4-\frac{128}{7}\right)
Tātaihia te 2 mā te pū o 7, kia riro ko 128.
\frac{d}{d_{2}}\left(\frac{28}{7}-\frac{128}{7}\right)
Me tahuri te 4 ki te hautau \frac{28}{7}.
\frac{d}{d_{2}}\times \frac{28-128}{7}
Tā te mea he rite te tauraro o \frac{28}{7} me \frac{128}{7}, me tango rāua mā te tango i ō raua taurunga.
\frac{d}{d_{2}}\left(-\frac{100}{7}\right)
Tangohia te 128 i te 28, ka -100.
\frac{-d\times 100}{d_{2}\times 7}
Me whakarea te \frac{d}{d_{2}} ki te -\frac{100}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-100d}{d_{2}\times 7}
Whakareatia te -1 ki te 100, ka -100.
\frac{d}{d_{2}}\left(2^{2}-\frac{2^{7}}{7}\right)
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te 1 i te 3 kia riro ai te 2.
\frac{d}{d_{2}}\left(4-\frac{2^{7}}{7}\right)
Tātaihia te 2 mā te pū o 2, kia riro ko 4.
\frac{d}{d_{2}}\left(4-\frac{128}{7}\right)
Tātaihia te 2 mā te pū o 7, kia riro ko 128.
\frac{d}{d_{2}}\left(\frac{28}{7}-\frac{128}{7}\right)
Me tahuri te 4 ki te hautau \frac{28}{7}.
\frac{d}{d_{2}}\times \frac{28-128}{7}
Tā te mea he rite te tauraro o \frac{28}{7} me \frac{128}{7}, me tango rāua mā te tango i ō raua taurunga.
\frac{d}{d_{2}}\left(-\frac{100}{7}\right)
Tangohia te 128 i te 28, ka -100.
\frac{-d\times 100}{d_{2}\times 7}
Me whakarea te \frac{d}{d_{2}} ki te -\frac{100}{7} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{-100d}{d_{2}\times 7}
Whakareatia te -1 ki te 100, ka -100.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}