Whakaoti mō d
d = \frac{200160}{101} = 1981\frac{79}{101} \approx 1981.782178218
Tohaina
Kua tāruatia ki te papatopenga
\frac{d}{2224}=\frac{4.5}{5.05}
Whakawehea ngā taha e rua ki te 5.05.
\frac{d}{2224}=\frac{450}{505}
Whakarohaina te \frac{4.5}{5.05} mā te whakarea i te taurunga me te tauraro ki te 100.
\frac{d}{2224}=\frac{90}{101}
Whakahekea te hautanga \frac{450}{505} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
d=\frac{90}{101}\times 2224
Me whakarea ngā taha e rua ki te 2224.
d=\frac{90\times 2224}{101}
Tuhia te \frac{90}{101}\times 2224 hei hautanga kotahi.
d=\frac{200160}{101}
Whakareatia te 90 ki te 2224, ka 200160.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}