Aromātai
c+d
Kimi Pārōnaki e ai ki d
1
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { d ^ { 2 } } { d - c } + \frac { c ^ { 2 } } { c - d }
Tohaina
Kua tāruatia ki te papatopenga
\frac{-d^{2}}{c-d}+\frac{c^{2}}{c-d}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o d-c me c-d ko c-d. Whakareatia \frac{d^{2}}{d-c} ki te \frac{-1}{-1}.
\frac{-d^{2}+c^{2}}{c-d}
Tā te mea he rite te tauraro o \frac{-d^{2}}{c-d} me \frac{c^{2}}{c-d}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(-c+d\right)\left(-c-d\right)}{c-d}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-d^{2}+c^{2}}{c-d}.
\frac{-\left(c-d\right)\left(-c-d\right)}{c-d}
Unuhia te tohu tōraro i roto o d-c.
-\left(-c-d\right)
Me whakakore tahi te c-d i te taurunga me te tauraro.
c+d
Me whakaroha te kīanga.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}