Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki d
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{-d^{2}}{c-d}+\frac{c^{2}}{c-d}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o d-c me c-d ko c-d. Whakareatia \frac{d^{2}}{d-c} ki te \frac{-1}{-1}.
\frac{-d^{2}+c^{2}}{c-d}
Tā te mea he rite te tauraro o \frac{-d^{2}}{c-d} me \frac{c^{2}}{c-d}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{\left(-c+d\right)\left(-c-d\right)}{c-d}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-d^{2}+c^{2}}{c-d}.
\frac{-\left(c-d\right)\left(-c-d\right)}{c-d}
Unuhia te tohu tōraro i roto o d-c.
-\left(-c-d\right)
Me whakakore tahi te c-d i te taurunga me te tauraro.
c+d
Me whakaroha te kīanga.