Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(c^{1}\right)^{9}\times \frac{1}{6c^{4}}
Whakamahia ngā ture taupū hei whakarūnā i te kīanga.
1^{9}\left(c^{1}\right)^{9}\times \frac{1}{6}\times \frac{1}{c^{4}}
Hei hiki i te hua o ngā tau e rua, neke atu rānei ki tētahi pū, hīkina ia tau ki te pū ka tuhi ko tāna hua.
1^{9}\times \frac{1}{6}\left(c^{1}\right)^{9}\times \frac{1}{c^{4}}
Whakamahia te Āhuatanga Kōaro o te Whakareanga.
1^{9}\times \frac{1}{6}c^{9}c^{4\left(-1\right)}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū.
1^{9}\times \frac{1}{6}c^{9}c^{-4}
Whakareatia 4 ki te -1.
1^{9}\times \frac{1}{6}c^{9-4}
Hei whakarea pū o te pūtake ōrite, tāpiri ana taupū.
1^{9}\times \frac{1}{6}c^{5}
Tāpirihia ngā taupū 9 me -4.
\frac{1}{6}c^{5}
Hīkina te 6 ki te pū -1.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{1}{6}c^{9-4})
Hei whakawehe i ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga.
\frac{\mathrm{d}}{\mathrm{d}c}(\frac{1}{6}c^{5})
Mahia ngā tātaitanga.
5\times \frac{1}{6}c^{5-1}
Ko te pārōnaki o tētahi pūrau ko te tapeke o ngā pārōnaki o ōna kīanga tau. Ko te pārōnaki o tētahi kīanga tau pūmau ko 0. Ko te pārōnaki o te ax^{n} ko te nax^{n-1}.
\frac{5}{6}c^{4}
Mahia ngā tātaitanga.