Aromātai
\frac{c^{2}+144}{c\left(12-c\right)^{2}}
Whakaroha
\frac{c^{2}+144}{c\left(c-12\right)^{2}}
Tohaina
Kua tāruatia ki te papatopenga
\frac{c+12}{\left(12-c\right)^{2}}+\frac{12}{c\left(-c+12\right)}
Tauwehea te 12c-c^{2}.
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}+\frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(12-c\right)^{2} me c\left(-c+12\right) ko c\left(-c+12\right)\left(-c+12\right)^{2}. Whakareatia \frac{c+12}{\left(12-c\right)^{2}} ki te \frac{c\left(-c+12\right)}{c\left(-c+12\right)}. Whakareatia \frac{12}{c\left(-c+12\right)} ki te \frac{\left(-c+12\right)^{2}}{\left(-c+12\right)^{2}}.
\frac{\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Tā te mea he rite te tauraro o \frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}} me \frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Mahia ngā whakarea i roto o \left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}.
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Whakakotahitia ngā kupu rite i -c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728.
\frac{\left(-c+12\right)\left(c^{2}+144\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}.
\frac{c^{2}+144}{c\left(-c+12\right)^{2}}
Me whakakore tahi te -c+12 i te taurunga me te tauraro.
\frac{c^{2}+144}{c^{3}-24c^{2}+144c}
Whakarohaina te c\left(-c+12\right)^{2}.
\frac{c+12}{\left(12-c\right)^{2}}+\frac{12}{c\left(-c+12\right)}
Tauwehea te 12c-c^{2}.
\frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}+\frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(12-c\right)^{2} me c\left(-c+12\right) ko c\left(-c+12\right)\left(-c+12\right)^{2}. Whakareatia \frac{c+12}{\left(12-c\right)^{2}} ki te \frac{c\left(-c+12\right)}{c\left(-c+12\right)}. Whakareatia \frac{12}{c\left(-c+12\right)} ki te \frac{\left(-c+12\right)^{2}}{\left(-c+12\right)^{2}}.
\frac{\left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Tā te mea he rite te tauraro o \frac{\left(c+12\right)c\left(-c+12\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}} me \frac{12\left(-c+12\right)^{2}}{c\left(-c+12\right)\left(-c+12\right)^{2}}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{-c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Mahia ngā whakarea i roto o \left(c+12\right)c\left(-c+12\right)+12\left(-c+12\right)^{2}.
\frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Whakakotahitia ngā kupu rite i -c^{3}+12c^{2}-12c^{2}+144c+12c^{2}-288c+1728.
\frac{\left(-c+12\right)\left(c^{2}+144\right)}{c\left(-c+12\right)\left(-c+12\right)^{2}}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{-c^{3}+12c^{2}-144c+1728}{c\left(-c+12\right)\left(-c+12\right)^{2}}.
\frac{c^{2}+144}{c\left(-c+12\right)^{2}}
Me whakakore tahi te -c+12 i te taurunga me te tauraro.
\frac{c^{2}+144}{c^{3}-24c^{2}+144c}
Whakarohaina te c\left(-c+12\right)^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}