Whakaoti mō b
b=-\frac{4}{3}+\frac{7}{3y}
y\neq 0\text{ and }y\neq -2
Whakaoti mō y
y=\frac{7}{3b+4}
b\neq -\frac{5}{2}\text{ and }b\neq -\frac{4}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
3\left(by-5\right)=\left(y+2\right)\left(-4\right)
Me whakarea ngā taha e rua o te whārite ki te 3\left(y+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o y+2,3.
3by-15=\left(y+2\right)\left(-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te by-5.
3by-15=-4y-8
Whakamahia te āhuatanga tohatoha hei whakarea te y+2 ki te -4.
3by=-4y-8+15
Me tāpiri te 15 ki ngā taha e rua.
3by=-4y+7
Tāpirihia te -8 ki te 15, ka 7.
3yb=7-4y
He hanga arowhānui tō te whārite.
\frac{3yb}{3y}=\frac{7-4y}{3y}
Whakawehea ngā taha e rua ki te 3y.
b=\frac{7-4y}{3y}
Mā te whakawehe ki te 3y ka wetekia te whakareanga ki te 3y.
b=-\frac{4}{3}+\frac{7}{3y}
Whakawehe -4y+7 ki te 3y.
3\left(by-5\right)=\left(y+2\right)\left(-4\right)
Tē taea kia ōrite te tāupe y ki -2 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 3\left(y+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o y+2,3.
3by-15=\left(y+2\right)\left(-4\right)
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te by-5.
3by-15=-4y-8
Whakamahia te āhuatanga tohatoha hei whakarea te y+2 ki te -4.
3by-15+4y=-8
Me tāpiri te 4y ki ngā taha e rua.
3by+4y=-8+15
Me tāpiri te 15 ki ngā taha e rua.
3by+4y=7
Tāpirihia te -8 ki te 15, ka 7.
\left(3b+4\right)y=7
Pahekotia ngā kīanga tau katoa e whai ana i te y.
\frac{\left(3b+4\right)y}{3b+4}=\frac{7}{3b+4}
Whakawehea ngā taha e rua ki te 4+3b.
y=\frac{7}{3b+4}
Mā te whakawehe ki te 4+3b ka wetekia te whakareanga ki te 4+3b.
y=\frac{7}{3b+4}\text{, }y\neq -2
Tē taea kia ōrite te tāupe y ki -2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}