Whakaoti mō b
b=-2
b = \frac{3}{2} = 1\frac{1}{2} = 1.5
Tohaina
Kua tāruatia ki te papatopenga
\left(b-3\right)\left(b-2\right)-5+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
Tē taea kia ōrite te tāupe b ki tētahi o ngā uara 1,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(b-3\right)\left(b-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o b-1,b^{2}-4b+3,3-b.
b^{2}-5b+6-5+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
Whakamahia te āhuatanga tuaritanga hei whakarea te b-3 ki te b-2 ka whakakotahi i ngā kupu rite.
b^{2}-5b+1+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
Tangohia te 5 i te 6, ka 1.
b^{2}-5b+1+b^{2}-4b+3=\left(1-b\right)\times 10
Whakamahia te āhuatanga tuaritanga hei whakarea te b-3 ki te b-1 ka whakakotahi i ngā kupu rite.
2b^{2}-5b+1-4b+3=\left(1-b\right)\times 10
Pahekotia te b^{2} me b^{2}, ka 2b^{2}.
2b^{2}-9b+1+3=\left(1-b\right)\times 10
Pahekotia te -5b me -4b, ka -9b.
2b^{2}-9b+4=\left(1-b\right)\times 10
Tāpirihia te 1 ki te 3, ka 4.
2b^{2}-9b+4=10-10b
Whakamahia te āhuatanga tohatoha hei whakarea te 1-b ki te 10.
2b^{2}-9b+4-10=-10b
Tangohia te 10 mai i ngā taha e rua.
2b^{2}-9b-6=-10b
Tangohia te 10 i te 4, ka -6.
2b^{2}-9b-6+10b=0
Me tāpiri te 10b ki ngā taha e rua.
2b^{2}+b-6=0
Pahekotia te -9b me 10b, ka b.
a+b=1 ab=2\left(-6\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 2b^{2}+ab+bb-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,12 -2,6 -3,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
-1+12=11 -2+6=4 -3+4=1
Tātaihia te tapeke mō ia takirua.
a=-3 b=4
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(2b^{2}-3b\right)+\left(4b-6\right)
Tuhia anō te 2b^{2}+b-6 hei \left(2b^{2}-3b\right)+\left(4b-6\right).
b\left(2b-3\right)+2\left(2b-3\right)
Tauwehea te b i te tuatahi me te 2 i te rōpū tuarua.
\left(2b-3\right)\left(b+2\right)
Whakatauwehea atu te kīanga pātahi 2b-3 mā te whakamahi i te āhuatanga tātai tohatoha.
b=\frac{3}{2} b=-2
Hei kimi otinga whārite, me whakaoti te 2b-3=0 me te b+2=0.
\left(b-3\right)\left(b-2\right)-5+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
Tē taea kia ōrite te tāupe b ki tētahi o ngā uara 1,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(b-3\right)\left(b-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o b-1,b^{2}-4b+3,3-b.
b^{2}-5b+6-5+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
Whakamahia te āhuatanga tuaritanga hei whakarea te b-3 ki te b-2 ka whakakotahi i ngā kupu rite.
b^{2}-5b+1+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
Tangohia te 5 i te 6, ka 1.
b^{2}-5b+1+b^{2}-4b+3=\left(1-b\right)\times 10
Whakamahia te āhuatanga tuaritanga hei whakarea te b-3 ki te b-1 ka whakakotahi i ngā kupu rite.
2b^{2}-5b+1-4b+3=\left(1-b\right)\times 10
Pahekotia te b^{2} me b^{2}, ka 2b^{2}.
2b^{2}-9b+1+3=\left(1-b\right)\times 10
Pahekotia te -5b me -4b, ka -9b.
2b^{2}-9b+4=\left(1-b\right)\times 10
Tāpirihia te 1 ki te 3, ka 4.
2b^{2}-9b+4=10-10b
Whakamahia te āhuatanga tohatoha hei whakarea te 1-b ki te 10.
2b^{2}-9b+4-10=-10b
Tangohia te 10 mai i ngā taha e rua.
2b^{2}-9b-6=-10b
Tangohia te 10 i te 4, ka -6.
2b^{2}-9b-6+10b=0
Me tāpiri te 10b ki ngā taha e rua.
2b^{2}+b-6=0
Pahekotia te -9b me 10b, ka b.
b=\frac{-1±\sqrt{1^{2}-4\times 2\left(-6\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 1 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-1±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
Pūrua 1.
b=\frac{-1±\sqrt{1-8\left(-6\right)}}{2\times 2}
Whakareatia -4 ki te 2.
b=\frac{-1±\sqrt{1+48}}{2\times 2}
Whakareatia -8 ki te -6.
b=\frac{-1±\sqrt{49}}{2\times 2}
Tāpiri 1 ki te 48.
b=\frac{-1±7}{2\times 2}
Tuhia te pūtakerua o te 49.
b=\frac{-1±7}{4}
Whakareatia 2 ki te 2.
b=\frac{6}{4}
Nā, me whakaoti te whārite b=\frac{-1±7}{4} ina he tāpiri te ±. Tāpiri -1 ki te 7.
b=\frac{3}{2}
Whakahekea te hautanga \frac{6}{4} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
b=-\frac{8}{4}
Nā, me whakaoti te whārite b=\frac{-1±7}{4} ina he tango te ±. Tango 7 mai i -1.
b=-2
Whakawehe -8 ki te 4.
b=\frac{3}{2} b=-2
Kua oti te whārite te whakatau.
\left(b-3\right)\left(b-2\right)-5+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
Tē taea kia ōrite te tāupe b ki tētahi o ngā uara 1,3 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te \left(b-3\right)\left(b-1\right), arā, te tauraro pātahi he tino iti rawa te kitea o b-1,b^{2}-4b+3,3-b.
b^{2}-5b+6-5+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
Whakamahia te āhuatanga tuaritanga hei whakarea te b-3 ki te b-2 ka whakakotahi i ngā kupu rite.
b^{2}-5b+1+\left(b-3\right)\left(b-1\right)=\left(1-b\right)\times 10
Tangohia te 5 i te 6, ka 1.
b^{2}-5b+1+b^{2}-4b+3=\left(1-b\right)\times 10
Whakamahia te āhuatanga tuaritanga hei whakarea te b-3 ki te b-1 ka whakakotahi i ngā kupu rite.
2b^{2}-5b+1-4b+3=\left(1-b\right)\times 10
Pahekotia te b^{2} me b^{2}, ka 2b^{2}.
2b^{2}-9b+1+3=\left(1-b\right)\times 10
Pahekotia te -5b me -4b, ka -9b.
2b^{2}-9b+4=\left(1-b\right)\times 10
Tāpirihia te 1 ki te 3, ka 4.
2b^{2}-9b+4=10-10b
Whakamahia te āhuatanga tohatoha hei whakarea te 1-b ki te 10.
2b^{2}-9b+4+10b=10
Me tāpiri te 10b ki ngā taha e rua.
2b^{2}+b+4=10
Pahekotia te -9b me 10b, ka b.
2b^{2}+b=10-4
Tangohia te 4 mai i ngā taha e rua.
2b^{2}+b=6
Tangohia te 4 i te 10, ka 6.
\frac{2b^{2}+b}{2}=\frac{6}{2}
Whakawehea ngā taha e rua ki te 2.
b^{2}+\frac{1}{2}b=\frac{6}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
b^{2}+\frac{1}{2}b=3
Whakawehe 6 ki te 2.
b^{2}+\frac{1}{2}b+\left(\frac{1}{4}\right)^{2}=3+\left(\frac{1}{4}\right)^{2}
Whakawehea te \frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{4}. Nā, tāpiria te pūrua o te \frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
b^{2}+\frac{1}{2}b+\frac{1}{16}=3+\frac{1}{16}
Pūruatia \frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
b^{2}+\frac{1}{2}b+\frac{1}{16}=\frac{49}{16}
Tāpiri 3 ki te \frac{1}{16}.
\left(b+\frac{1}{4}\right)^{2}=\frac{49}{16}
Tauwehea b^{2}+\frac{1}{2}b+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b+\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
b+\frac{1}{4}=\frac{7}{4} b+\frac{1}{4}=-\frac{7}{4}
Whakarūnātia.
b=\frac{3}{2} b=-2
Me tango \frac{1}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}