Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Tauwehea te b^{4}-1. Tauwehea te 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) me \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) ko \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). Whakareatia \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} ki te \frac{-1}{-1}.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Tā te mea he rite te tauraro o \frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} me \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Mahia ngā whakarea i roto o b^{2}+2+3\left(-1\right).
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Whakakotahitia ngā kupu rite i b^{2}+2-3.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}.
\frac{1}{b^{2}+1}
Me whakakore tahi te \left(b-1\right)\left(b+1\right) i te taurunga me te tauraro.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Tauwehea te b^{4}-1. Tauwehea te 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) me \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) ko \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). Whakareatia \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} ki te \frac{-1}{-1}.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Tā te mea he rite te tauraro o \frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} me \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Mahia ngā whakarea i roto o b^{2}+2+3\left(-1\right).
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Whakakotahitia ngā kupu rite i b^{2}+2-3.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}.
\frac{1}{b^{2}+1}
Me whakakore tahi te \left(b-1\right)\left(b+1\right) i te taurunga me te tauraro.