Aromātai
\frac{1}{b^{2}+1}
Whakaroha
\frac{1}{b^{2}+1}
Tohaina
Kua tāruatia ki te papatopenga
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Tauwehea te b^{4}-1. Tauwehea te 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) me \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) ko \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). Whakareatia \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} ki te \frac{-1}{-1}.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Tā te mea he rite te tauraro o \frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} me \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Mahia ngā whakarea i roto o b^{2}+2+3\left(-1\right).
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Whakakotahitia ngā kupu rite i b^{2}+2-3.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}.
\frac{1}{b^{2}+1}
Me whakakore tahi te \left(b-1\right)\left(b+1\right) i te taurunga me te tauraro.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)}
Tauwehea te b^{4}-1. Tauwehea te 1-b^{4}.
\frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}+\frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right) me \left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right) ko \left(b-1\right)\left(b+1\right)\left(b^{2}+1\right). Whakareatia \frac{3}{\left(b-1\right)\left(b+1\right)\left(-b^{2}-1\right)} ki te \frac{-1}{-1}.
\frac{b^{2}+2+3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Tā te mea he rite te tauraro o \frac{b^{2}+2}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)} me \frac{3\left(-1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{b^{2}+2-3}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Mahia ngā whakarea i roto o b^{2}+2+3\left(-1\right).
\frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Whakakotahitia ngā kupu rite i b^{2}+2-3.
\frac{\left(b-1\right)\left(b+1\right)}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{b^{2}-1}{\left(b-1\right)\left(b+1\right)\left(b^{2}+1\right)}.
\frac{1}{b^{2}+1}
Me whakakore tahi te \left(b-1\right)\left(b+1\right) i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}