Aromātai
\frac{10\left(b+3\right)\left(2b+7\right)}{21a}
Whakaroha
\frac{10\left(2b^{2}+13b+21\right)}{21a}
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { b + 3 } { a + 2 a } \div \frac { 7 } { 20 b + 70 }
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(b+3\right)\left(20b+70\right)}{\left(a+2a\right)\times 7}
Whakawehe \frac{b+3}{a+2a} ki te \frac{7}{20b+70} mā te whakarea \frac{b+3}{a+2a} ki te tau huripoki o \frac{7}{20b+70}.
\frac{\left(b+3\right)\left(20b+70\right)}{3a\times 7}
Pahekotia te a me 2a, ka 3a.
\frac{\left(b+3\right)\left(20b+70\right)}{21a}
Whakareatia te 3 ki te 7, ka 21.
\frac{20b^{2}+70b+60b+210}{21a}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o b+3 ki ia tau o 20b+70.
\frac{20b^{2}+130b+210}{21a}
Pahekotia te 70b me 60b, ka 130b.
\frac{\left(b+3\right)\left(20b+70\right)}{\left(a+2a\right)\times 7}
Whakawehe \frac{b+3}{a+2a} ki te \frac{7}{20b+70} mā te whakarea \frac{b+3}{a+2a} ki te tau huripoki o \frac{7}{20b+70}.
\frac{\left(b+3\right)\left(20b+70\right)}{3a\times 7}
Pahekotia te a me 2a, ka 3a.
\frac{\left(b+3\right)\left(20b+70\right)}{21a}
Whakareatia te 3 ki te 7, ka 21.
\frac{20b^{2}+70b+60b+210}{21a}
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o b+3 ki ia tau o 20b+70.
\frac{20b^{2}+130b+210}{21a}
Pahekotia te 70b me 60b, ka 130b.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}