Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a-y+ax^{2}y=ax^{2}\left(\cos(x)\right)^{2}
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te ax^{2}.
a-y+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=0
Tangohia te ax^{2}\left(\cos(x)\right)^{2} mai i ngā taha e rua.
a+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=y
Me tāpiri te y ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\left(1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}\right)a=y
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a=y
He hanga arowhānui tō te whārite.
\frac{\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Whakawehea ngā taha e rua ki te 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Mā te whakawehe ki te 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} ka wetekia te whakareanga ki te 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}
Whakawehe y ki te 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}\text{, }a\neq 0
Tē taea kia ōrite te tāupe a ki 0.
a-y+ax^{2}y=ax^{2}\left(\cos(x)\right)^{2}
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te ax^{2}.
a-y+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=0
Tangohia te ax^{2}\left(\cos(x)\right)^{2} mai i ngā taha e rua.
a+ax^{2}y-ax^{2}\left(\cos(x)\right)^{2}=y
Me tāpiri te y ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\left(1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}\right)a=y
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a=y
He hanga arowhānui tō te whārite.
\frac{\left(-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1\right)a}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Whakawehea ngā taha e rua ki te 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{-x^{2}\left(\cos(x)\right)^{2}+yx^{2}+1}
Mā te whakawehe ki te 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2} ka wetekia te whakareanga ki te 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}
Whakawehe y ki te 1+x^{2}y-x^{2}\left(\cos(x)\right)^{2}.
a=\frac{y}{x^{2}\left(-\left(\cos(x)\right)^{2}+y\right)+1}\text{, }a\neq 0
Tē taea kia ōrite te tāupe a ki 0.