Whakaoti mō R
R=\frac{ab}{a+b}
a\neq -b\text{ and }a\neq 0\text{ and }b\neq 0
Whakaoti mō a
a=\frac{Rb}{b-R}
R\neq 0\text{ and }b\neq 0\text{ and }R\neq b
Tohaina
Kua tāruatia ki te papatopenga
b\left(a-R\right)=aR
Me whakarea ngā taha e rua o te whārite ki te ab, arā, te tauraro pātahi he tino iti rawa te kitea o a,b.
ba-bR=aR
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te a-R.
ba-bR-aR=0
Tangohia te aR mai i ngā taha e rua.
-bR-aR=-ba
Tangohia te ba mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-Ra-Rb=-ab
Whakaraupapatia anō ngā kīanga tau.
\left(-a-b\right)R=-ab
Pahekotia ngā kīanga tau katoa e whai ana i te R.
\frac{\left(-a-b\right)R}{-a-b}=-\frac{ab}{-a-b}
Whakawehea ngā taha e rua ki te -a-b.
R=-\frac{ab}{-a-b}
Mā te whakawehe ki te -a-b ka wetekia te whakareanga ki te -a-b.
R=\frac{ab}{a+b}
Whakawehe -ab ki te -a-b.
b\left(a-R\right)=aR
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te ab, arā, te tauraro pātahi he tino iti rawa te kitea o a,b.
ba-bR=aR
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te a-R.
ba-bR-aR=0
Tangohia te aR mai i ngā taha e rua.
ba-aR=bR
Me tāpiri te bR ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\left(b-R\right)a=bR
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(b-R\right)a=Rb
He hanga arowhānui tō te whārite.
\frac{\left(b-R\right)a}{b-R}=\frac{Rb}{b-R}
Whakawehea ngā taha e rua ki te b-R.
a=\frac{Rb}{b-R}
Mā te whakawehe ki te b-R ka wetekia te whakareanga ki te b-R.
a=\frac{Rb}{b-R}\text{, }a\neq 0
Tē taea kia ōrite te tāupe a ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}