Aromātai
\frac{-a^{3}-2a^{2}+ab-2b}{b\left(a+2\right)}
Whakaroha
\frac{-a^{3}-2a^{2}+ab-2b}{b\left(a+2\right)}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(a-2\right)b}{b\left(a+2\right)}-\frac{a^{2}\left(a+2\right)}{b\left(a+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+2 me b ko b\left(a+2\right). Whakareatia \frac{a-2}{a+2} ki te \frac{b}{b}. Whakareatia \frac{a^{2}}{b} ki te \frac{a+2}{a+2}.
\frac{\left(a-2\right)b-a^{2}\left(a+2\right)}{b\left(a+2\right)}
Tā te mea he rite te tauraro o \frac{\left(a-2\right)b}{b\left(a+2\right)} me \frac{a^{2}\left(a+2\right)}{b\left(a+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{ab-2b-a^{3}-2a^{2}}{b\left(a+2\right)}
Mahia ngā whakarea i roto o \left(a-2\right)b-a^{2}\left(a+2\right).
\frac{ab-2b-a^{3}-2a^{2}}{ab+2b}
Whakarohaina te b\left(a+2\right).
\frac{\left(a-2\right)b}{b\left(a+2\right)}-\frac{a^{2}\left(a+2\right)}{b\left(a+2\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+2 me b ko b\left(a+2\right). Whakareatia \frac{a-2}{a+2} ki te \frac{b}{b}. Whakareatia \frac{a^{2}}{b} ki te \frac{a+2}{a+2}.
\frac{\left(a-2\right)b-a^{2}\left(a+2\right)}{b\left(a+2\right)}
Tā te mea he rite te tauraro o \frac{\left(a-2\right)b}{b\left(a+2\right)} me \frac{a^{2}\left(a+2\right)}{b\left(a+2\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{ab-2b-a^{3}-2a^{2}}{b\left(a+2\right)}
Mahia ngā whakarea i roto o \left(a-2\right)b-a^{2}\left(a+2\right).
\frac{ab-2b-a^{3}-2a^{2}}{ab+2b}
Whakarohaina te b\left(a+2\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}