Tīpoka ki ngā ihirangi matua
Whakaoti mō a (complex solution)
Tick mark Image
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(2a-2\right)\left(a-1\right)-\left(a+1\right)a-\left(a-1\right)a=2\left(1-2a\right)
Tē taea kia ōrite te tāupe a ki tētahi o ngā uara -1,0,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2a\left(a-1\right)\left(a+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o a^{2}+a,2a-2,2a+2,a\left(a^{2}-1\right).
2a^{2}-4a+2-\left(a+1\right)a-\left(a-1\right)a=2\left(1-2a\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2a-2 ki te a-1 ka whakakotahi i ngā kupu rite.
2a^{2}-4a+2-\left(a^{2}+a\right)-\left(a-1\right)a=2\left(1-2a\right)
Whakamahia te āhuatanga tohatoha hei whakarea te a+1 ki te a.
2a^{2}-4a+2-a^{2}-a-\left(a-1\right)a=2\left(1-2a\right)
Hei kimi i te tauaro o a^{2}+a, kimihia te tauaro o ia taurangi.
a^{2}-4a+2-a-\left(a-1\right)a=2\left(1-2a\right)
Pahekotia te 2a^{2} me -a^{2}, ka a^{2}.
a^{2}-5a+2-\left(a-1\right)a=2\left(1-2a\right)
Pahekotia te -4a me -a, ka -5a.
a^{2}-5a+2-\left(a^{2}-a\right)=2\left(1-2a\right)
Whakamahia te āhuatanga tohatoha hei whakarea te a-1 ki te a.
a^{2}-5a+2-a^{2}+a=2\left(1-2a\right)
Hei kimi i te tauaro o a^{2}-a, kimihia te tauaro o ia taurangi.
-5a+2+a=2\left(1-2a\right)
Pahekotia te a^{2} me -a^{2}, ka 0.
-4a+2=2\left(1-2a\right)
Pahekotia te -5a me a, ka -4a.
-4a+2=2-4a
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 1-2a.
-4a+2-2=-4a
Tangohia te 2 mai i ngā taha e rua.
-4a=-4a
Tangohia te 2 i te 2, ka 0.
-4a+4a=0
Me tāpiri te 4a ki ngā taha e rua.
0=0
Pahekotia te -4a me 4a, ka 0.
\text{true}
Whakatauritea te 0 me te 0.
a\in \mathrm{C}
He pono tēnei mō tētahi a ahakoa.
a\in \mathrm{C}\setminus -1,0,1
Tē taea kia ōrite te tāupe a ki tētahi o ngā uara -1,1,0.
\left(2a-2\right)\left(a-1\right)-\left(a+1\right)a-\left(a-1\right)a=2\left(1-2a\right)
Tē taea kia ōrite te tāupe a ki tētahi o ngā uara -1,0,1 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2a\left(a-1\right)\left(a+1\right), arā, te tauraro pātahi he tino iti rawa te kitea o a^{2}+a,2a-2,2a+2,a\left(a^{2}-1\right).
2a^{2}-4a+2-\left(a+1\right)a-\left(a-1\right)a=2\left(1-2a\right)
Whakamahia te āhuatanga tuaritanga hei whakarea te 2a-2 ki te a-1 ka whakakotahi i ngā kupu rite.
2a^{2}-4a+2-\left(a^{2}+a\right)-\left(a-1\right)a=2\left(1-2a\right)
Whakamahia te āhuatanga tohatoha hei whakarea te a+1 ki te a.
2a^{2}-4a+2-a^{2}-a-\left(a-1\right)a=2\left(1-2a\right)
Hei kimi i te tauaro o a^{2}+a, kimihia te tauaro o ia taurangi.
a^{2}-4a+2-a-\left(a-1\right)a=2\left(1-2a\right)
Pahekotia te 2a^{2} me -a^{2}, ka a^{2}.
a^{2}-5a+2-\left(a-1\right)a=2\left(1-2a\right)
Pahekotia te -4a me -a, ka -5a.
a^{2}-5a+2-\left(a^{2}-a\right)=2\left(1-2a\right)
Whakamahia te āhuatanga tohatoha hei whakarea te a-1 ki te a.
a^{2}-5a+2-a^{2}+a=2\left(1-2a\right)
Hei kimi i te tauaro o a^{2}-a, kimihia te tauaro o ia taurangi.
-5a+2+a=2\left(1-2a\right)
Pahekotia te a^{2} me -a^{2}, ka 0.
-4a+2=2\left(1-2a\right)
Pahekotia te -5a me a, ka -4a.
-4a+2=2-4a
Whakamahia te āhuatanga tohatoha hei whakarea te 2 ki te 1-2a.
-4a+2-2=-4a
Tangohia te 2 mai i ngā taha e rua.
-4a=-4a
Tangohia te 2 i te 2, ka 0.
-4a+4a=0
Me tāpiri te 4a ki ngā taha e rua.
0=0
Pahekotia te -4a me 4a, ka 0.
\text{true}
Whakatauritea te 0 me te 0.
a\in \mathrm{R}
He pono tēnei mō tētahi a ahakoa.
a\in \mathrm{R}\setminus -1,0,1
Tē taea kia ōrite te tāupe a ki tētahi o ngā uara -1,1,0.