Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image
Whakaoti mō q
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a\left(1-q^{3}\right)=12\left(-q+1\right)
Whakareatia ngā taha e rua o te whārite ki te -q+1.
a-aq^{3}=12\left(-q+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te 1-q^{3}.
a-aq^{3}=-12q+12
Whakamahia te āhuatanga tohatoha hei whakarea te 12 ki te -q+1.
\left(1-q^{3}\right)a=-12q+12
Pahekotia ngā kīanga tau katoa e whai ana i te a.
\left(1-q^{3}\right)a=12-12q
He hanga arowhānui tō te whārite.
\frac{\left(1-q^{3}\right)a}{1-q^{3}}=\frac{12-12q}{1-q^{3}}
Whakawehea ngā taha e rua ki te 1-q^{3}.
a=\frac{12-12q}{1-q^{3}}
Mā te whakawehe ki te 1-q^{3} ka wetekia te whakareanga ki te 1-q^{3}.
a=\frac{12}{q^{2}+q+1}
Whakawehe -12q+12 ki te 1-q^{3}.