Aromātai
\frac{a}{b}
Whakaroha
\frac{a}{b}
Tohaina
Kua tāruatia ki te papatopenga
\frac{a}{a-b}\left(\frac{a}{ab}-\frac{b}{ab}\right)+\frac{a-1}{b}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o b me a ko ab. Whakareatia \frac{1}{b} ki te \frac{a}{a}. Whakareatia \frac{1}{a} ki te \frac{b}{b}.
\frac{a}{a-b}\times \frac{a-b}{ab}+\frac{a-1}{b}
Tā te mea he rite te tauraro o \frac{a}{ab} me \frac{b}{ab}, me tango rāua mā te tango i ō raua taurunga.
\frac{a\left(a-b\right)}{\left(a-b\right)ab}+\frac{a-1}{b}
Me whakarea te \frac{a}{a-b} ki te \frac{a-b}{ab} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{b}+\frac{a-1}{b}
Me whakakore tahi te a\left(a-b\right) i te taurunga me te tauraro.
\frac{1+a-1}{b}
Tā te mea he rite te tauraro o \frac{1}{b} me \frac{a-1}{b}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{a}{b}
Whakakotahitia ngā kupu rite i 1+a-1.
\frac{a}{a-b}\left(\frac{a}{ab}-\frac{b}{ab}\right)+\frac{a-1}{b}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o b me a ko ab. Whakareatia \frac{1}{b} ki te \frac{a}{a}. Whakareatia \frac{1}{a} ki te \frac{b}{b}.
\frac{a}{a-b}\times \frac{a-b}{ab}+\frac{a-1}{b}
Tā te mea he rite te tauraro o \frac{a}{ab} me \frac{b}{ab}, me tango rāua mā te tango i ō raua taurunga.
\frac{a\left(a-b\right)}{\left(a-b\right)ab}+\frac{a-1}{b}
Me whakarea te \frac{a}{a-b} ki te \frac{a-b}{ab} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{1}{b}+\frac{a-1}{b}
Me whakakore tahi te a\left(a-b\right) i te taurunga me te tauraro.
\frac{1+a-1}{b}
Tā te mea he rite te tauraro o \frac{1}{b} me \frac{a-1}{b}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{a}{b}
Whakakotahitia ngā kupu rite i 1+a-1.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}