Aromātai
\frac{a^{2}+b^{2}}{a^{2}-b^{2}}
Kimi Pārōnaki e ai ki a
-4\times \left(\frac{b}{a^{2}-b^{2}}\right)^{2}a
Tohaina
Kua tāruatia ki te papatopenga
\frac{a\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+b me a-b ko \left(a+b\right)\left(a-b\right). Whakareatia \frac{a}{a+b} ki te \frac{a-b}{a-b}. Whakareatia \frac{b}{a-b} ki te \frac{a+b}{a+b}.
\frac{a\left(a-b\right)+b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
Tā te mea he rite te tauraro o \frac{a\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} me \frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{a^{2}-ab+ba+b^{2}}{\left(a+b\right)\left(a-b\right)}
Mahia ngā whakarea i roto o a\left(a-b\right)+b\left(a+b\right).
\frac{a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)}
Whakakotahitia ngā kupu rite i a^{2}-ab+ba+b^{2}.
\frac{a^{2}+b^{2}}{a^{2}-b^{2}}
Whakarohaina te \left(a+b\right)\left(a-b\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}