Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{a\left(a-b\right)}{\left(a+b\right)\left(a-b\right)}+\frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+b me a-b ko \left(a+b\right)\left(a-b\right). Whakareatia \frac{a}{a+b} ki te \frac{a-b}{a-b}. Whakareatia \frac{b}{a-b} ki te \frac{a+b}{a+b}.
\frac{a\left(a-b\right)+b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}
Tā te mea he rite te tauraro o \frac{a\left(a-b\right)}{\left(a+b\right)\left(a-b\right)} me \frac{b\left(a+b\right)}{\left(a+b\right)\left(a-b\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{a^{2}-ab+ba+b^{2}}{\left(a+b\right)\left(a-b\right)}
Mahia ngā whakarea i roto o a\left(a-b\right)+b\left(a+b\right).
\frac{a^{2}+b^{2}}{\left(a+b\right)\left(a-b\right)}
Whakakotahitia ngā kupu rite i a^{2}-ab+ba+b^{2}.
\frac{a^{2}+b^{2}}{a^{2}-b^{2}}
Whakarohaina te \left(a+b\right)\left(a-b\right).