Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{a}{a+1}-\frac{a^{2}}{\left(a-1\right)\left(a+1\right)}
Tauwehea te a^{2}-1.
\frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{a^{2}}{\left(a-1\right)\left(a+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+1 me \left(a-1\right)\left(a+1\right) ko \left(a-1\right)\left(a+1\right). Whakareatia \frac{a}{a+1} ki te \frac{a-1}{a-1}.
\frac{a\left(a-1\right)-a^{2}}{\left(a-1\right)\left(a+1\right)}
Tā te mea he rite te tauraro o \frac{a\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} me \frac{a^{2}}{\left(a-1\right)\left(a+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{a^{2}-a-a^{2}}{\left(a-1\right)\left(a+1\right)}
Mahia ngā whakarea i roto o a\left(a-1\right)-a^{2}.
\frac{-a}{\left(a-1\right)\left(a+1\right)}
Whakakotahitia ngā kupu rite i a^{2}-a-a^{2}.
\frac{-a}{a^{2}-1}
Whakarohaina te \left(a-1\right)\left(a+1\right).