Whakaoti mō a
a=\frac{4\left(b+20\right)}{5}
Whakaoti mō b
b=\frac{5\left(a-16\right)}{4}
Tohaina
Kua tāruatia ki te papatopenga
5a-4b=80
Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 4,5.
5a=80+4b
Me tāpiri te 4b ki ngā taha e rua.
5a=4b+80
He hanga arowhānui tō te whārite.
\frac{5a}{5}=\frac{4b+80}{5}
Whakawehea ngā taha e rua ki te 5.
a=\frac{4b+80}{5}
Mā te whakawehe ki te 5 ka wetekia te whakareanga ki te 5.
a=\frac{4b}{5}+16
Whakawehe 80+4b ki te 5.
5a-4b=80
Me whakarea ngā taha e rua o te whārite ki te 20, arā, te tauraro pātahi he tino iti rawa te kitea o 4,5.
-4b=80-5a
Tangohia te 5a mai i ngā taha e rua.
\frac{-4b}{-4}=\frac{80-5a}{-4}
Whakawehea ngā taha e rua ki te -4.
b=\frac{80-5a}{-4}
Mā te whakawehe ki te -4 ka wetekia te whakareanga ki te -4.
b=\frac{5a}{4}-20
Whakawehe 80-5a ki te -4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}