Aromātai
-a^{3}+\frac{2a^{2}}{3}+\frac{a}{2}
Tauwehe
-a\left(a-\left(-\frac{\sqrt{22}}{6}+\frac{1}{3}\right)\right)\left(a-\left(\frac{\sqrt{22}}{6}+\frac{1}{3}\right)\right)
Tohaina
Kua tāruatia ki te papatopenga
\frac{a}{2}+\frac{2a^{2}}{3}-a^{3}
Me whakakore te 4 me te 4.
\frac{3a}{6}+\frac{2\times 2a^{2}}{6}-a^{3}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o 2 me 3 ko 6. Whakareatia \frac{a}{2} ki te \frac{3}{3}. Whakareatia \frac{2a^{2}}{3} ki te \frac{2}{2}.
\frac{3a+2\times 2a^{2}}{6}-a^{3}
Tā te mea he rite te tauraro o \frac{3a}{6} me \frac{2\times 2a^{2}}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{3a+4a^{2}}{6}-a^{3}
Mahia ngā whakarea i roto o 3a+2\times 2a^{2}.
\frac{3a+4a^{2}}{6}-\frac{6a^{3}}{6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia a^{3} ki te \frac{6}{6}.
\frac{3a+4a^{2}-6a^{3}}{6}
Tā te mea he rite te tauraro o \frac{3a+4a^{2}}{6} me \frac{6a^{3}}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{1}{2}a-a^{3}+\frac{2}{3}a^{2}
Whakawehea ia wā o 3a+4a^{2}-6a^{3} ki te 6, kia riro ko \frac{1}{2}a-a^{3}+\frac{2}{3}a^{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}