Whakaoti mō a
a=-\frac{10}{21}\approx -0.476190476
Tohaina
Kua tāruatia ki te papatopenga
105a+140=42\times 3a+150
Me whakarea ngā taha e rua o te whārite ki te 210, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3,5,7.
105a+140=126a+150
Whakareatia te 42 ki te 3, ka 126.
105a+140-126a=150
Tangohia te 126a mai i ngā taha e rua.
-21a+140=150
Pahekotia te 105a me -126a, ka -21a.
-21a=150-140
Tangohia te 140 mai i ngā taha e rua.
-21a=10
Tangohia te 140 i te 150, ka 10.
a=\frac{10}{-21}
Whakawehea ngā taha e rua ki te -21.
a=-\frac{10}{21}
Ka taea te hautanga \frac{10}{-21} te tuhi anō ko -\frac{10}{21} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}