Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{a}{\left(a-1\right)\left(-a-1\right)}+\frac{a}{1+a^{2}}
Tauwehea te 1-a^{2}.
\frac{a\left(a^{2}+1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}+\frac{a\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(a-1\right)\left(-a-1\right) me 1+a^{2} ko \left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right). Whakareatia \frac{a}{\left(a-1\right)\left(-a-1\right)} ki te \frac{a^{2}+1}{a^{2}+1}. Whakareatia \frac{a}{1+a^{2}} ki te \frac{\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)}.
\frac{a\left(a^{2}+1\right)+a\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
Tā te mea he rite te tauraro o \frac{a\left(a^{2}+1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)} me \frac{a\left(a-1\right)\left(-a-1\right)}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{a^{3}+a-a^{3}-a^{2}+a^{2}+a}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
Mahia ngā whakarea i roto o a\left(a^{2}+1\right)+a\left(a-1\right)\left(-a-1\right).
\frac{2a}{\left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right)}
Whakakotahitia ngā kupu rite i a^{3}+a-a^{3}-a^{2}+a^{2}+a.
\frac{2a}{-a^{4}+1}
Whakarohaina te \left(a-1\right)\left(-a-1\right)\left(a^{2}+1\right).