Aromātai
a^{15}
Kimi Pārōnaki e ai ki a
15a^{14}
Tohaina
Kua tāruatia ki te papatopenga
\frac{a^{13}}{a^{-2}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 10 kia riro ai te 13.
a^{15}
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te -2 i te 13 kia riro ai te 15.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{13}}{a^{-2}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 10 kia riro ai te 13.
\frac{\mathrm{d}}{\mathrm{d}a}(a^{15})
Hei whakawehe ngā pū o te pūtake kotahi, tangohia te taupū o te tauraro mai i te taupū o te taurunga. Me tango te -2 i te 13 kia riro ai te 15.
15a^{15-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
15a^{14}
Tango 1 mai i 15.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}