Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{a^{5}a^{-1}}{\left(\frac{a^{5}}{a^{8}}\right)^{-1}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 2 kia riro ai te 5.
\frac{a^{4}}{\left(\frac{a^{5}}{a^{8}}\right)^{-1}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te -1 kia riro ai te 4.
\frac{a^{4}}{\left(\frac{1}{a^{3}}\right)^{-1}}
Tuhia anō te a^{8} hei a^{5}a^{3}. Me whakakore tahi te a^{5} i te taurunga me te tauraro.
\frac{a^{4}}{\frac{1^{-1}}{\left(a^{3}\right)^{-1}}}
Kia whakarewa i te \frac{1}{a^{3}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{a^{4}\left(a^{3}\right)^{-1}}{1^{-1}}
Whakawehe a^{4} ki te \frac{1^{-1}}{\left(a^{3}\right)^{-1}} mā te whakarea a^{4} ki te tau huripoki o \frac{1^{-1}}{\left(a^{3}\right)^{-1}}.
\frac{a^{4}a^{-3}}{1^{-1}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te -1 kia riro ai te -3.
\frac{a^{1}}{1^{-1}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te -3 kia riro ai te 1.
\frac{a}{1^{-1}}
Tātaihia te a mā te pū o 1, kia riro ko a.
\frac{a}{1}
Tātaihia te 1 mā te pū o -1, kia riro ko 1.
a
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}a^{-1}}{\left(\frac{a^{5}}{a^{8}}\right)^{-1}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 3 me te 2 kia riro ai te 5.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}}{\left(\frac{a^{5}}{a^{8}}\right)^{-1}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 5 me te -1 kia riro ai te 4.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}}{\left(\frac{1}{a^{3}}\right)^{-1}})
Tuhia anō te a^{8} hei a^{5}a^{3}. Me whakakore tahi te a^{5} i te taurunga me te tauraro.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}}{\frac{1^{-1}}{\left(a^{3}\right)^{-1}}})
Kia whakarewa i te \frac{1}{a^{3}} ki tētahi taupū, me whakarewa tahi te taurunga me te tauraro ki te taupū kātahi ka whakawehe.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}\left(a^{3}\right)^{-1}}{1^{-1}})
Whakawehe a^{4} ki te \frac{1^{-1}}{\left(a^{3}\right)^{-1}} mā te whakarea a^{4} ki te tau huripoki o \frac{1^{-1}}{\left(a^{3}\right)^{-1}}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}a^{-3}}{1^{-1}})
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te -1 kia riro ai te -3.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{1}}{1^{-1}})
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 4 me te -3 kia riro ai te 1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a}{1^{-1}})
Tātaihia te a mā te pū o 1, kia riro ko a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a}{1})
Tātaihia te 1 mā te pū o -1, kia riro ko 1.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
Ka whakawehea he tau ki te tahi, hua ai ko ia anō.
a^{1-1}
Ko te pārōnaki o ax^{n} ko nax^{n-1}.
a^{0}
Tango 1 mai i 1.
1
Mō tētahi kupu t mahue te 0, t^{0}=1.