Aromātai
0
Tauwehe
0
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(a-3\right)\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}-2-\frac{a-1}{2-a}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{a^{2}-a-6}{a^{2}-4}.
\frac{a-3}{a-2}-2-\frac{a-1}{2-a}
Me whakakore tahi te a+2 i te taurunga me te tauraro.
\frac{a-3}{a-2}-\frac{2\left(a-2\right)}{a-2}-\frac{a-1}{2-a}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 2 ki te \frac{a-2}{a-2}.
\frac{a-3-2\left(a-2\right)}{a-2}-\frac{a-1}{2-a}
Tā te mea he rite te tauraro o \frac{a-3}{a-2} me \frac{2\left(a-2\right)}{a-2}, me tango rāua mā te tango i ō raua taurunga.
\frac{a-3-2a+4}{a-2}-\frac{a-1}{2-a}
Mahia ngā whakarea i roto o a-3-2\left(a-2\right).
\frac{-a+1}{a-2}-\frac{a-1}{2-a}
Whakakotahitia ngā kupu rite i a-3-2a+4.
\frac{-a+1}{a-2}-\frac{-\left(a-1\right)}{a-2}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a-2 me 2-a ko a-2. Whakareatia \frac{a-1}{2-a} ki te \frac{-1}{-1}.
\frac{-a+1-\left(-\left(a-1\right)\right)}{a-2}
Tā te mea he rite te tauraro o \frac{-a+1}{a-2} me \frac{-\left(a-1\right)}{a-2}, me tango rāua mā te tango i ō raua taurunga.
\frac{-a+1+a-1}{a-2}
Mahia ngā whakarea i roto o -a+1-\left(-\left(a-1\right)\right).
\frac{0}{a-2}
Whakakotahitia ngā kupu rite i -a+1+a-1.
0
Ina whakawehea te kore ki te tau ehara i te kore ka kore tonu.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}