Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(a^{2}-a-12\right)\left(2a^{2}+9a+4\right)}{\left(2a^{2}+a\right)\left(16-a^{2}\right)}
Whakawehe \frac{a^{2}-a-12}{2a^{2}+a} ki te \frac{16-a^{2}}{2a^{2}+9a+4} mā te whakarea \frac{a^{2}-a-12}{2a^{2}+a} ki te tau huripoki o \frac{16-a^{2}}{2a^{2}+9a+4}.
\frac{\left(a-4\right)\left(a+3\right)\left(a+4\right)\left(2a+1\right)}{a\left(a-4\right)\left(-a-4\right)\left(2a+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-\left(a-4\right)\left(-a-4\right)\left(a+3\right)\left(2a+1\right)}{a\left(a-4\right)\left(-a-4\right)\left(2a+1\right)}
Unuhia te tohu tōraro i roto o 4+a.
\frac{-\left(a+3\right)}{a}
Me whakakore tahi te \left(a-4\right)\left(-a-4\right)\left(2a+1\right) i te taurunga me te tauraro.
\frac{-a-3}{a}
Me whakaroha te kīanga.
\frac{\left(a^{2}-a-12\right)\left(2a^{2}+9a+4\right)}{\left(2a^{2}+a\right)\left(16-a^{2}\right)}
Whakawehe \frac{a^{2}-a-12}{2a^{2}+a} ki te \frac{16-a^{2}}{2a^{2}+9a+4} mā te whakarea \frac{a^{2}-a-12}{2a^{2}+a} ki te tau huripoki o \frac{16-a^{2}}{2a^{2}+9a+4}.
\frac{\left(a-4\right)\left(a+3\right)\left(a+4\right)\left(2a+1\right)}{a\left(a-4\right)\left(-a-4\right)\left(2a+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea.
\frac{-\left(a-4\right)\left(-a-4\right)\left(a+3\right)\left(2a+1\right)}{a\left(a-4\right)\left(-a-4\right)\left(2a+1\right)}
Unuhia te tohu tōraro i roto o 4+a.
\frac{-\left(a+3\right)}{a}
Me whakakore tahi te \left(a-4\right)\left(-a-4\right)\left(2a+1\right) i te taurunga me te tauraro.
\frac{-a-3}{a}
Me whakaroha te kīanga.