Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{a^{2}-a}{a^{2}+1}+\frac{2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Tauwehea te a^{3}-a^{2}+a-1.
\frac{\left(a^{2}-a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+1\right)}+\frac{2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a^{2}+1 me \left(a-1\right)\left(a^{2}+1\right) ko \left(a-1\right)\left(a^{2}+1\right). Whakareatia \frac{a^{2}-a}{a^{2}+1} ki te \frac{a-1}{a-1}.
\frac{\left(a^{2}-a\right)\left(a-1\right)+2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Tā te mea he rite te tauraro o \frac{\left(a^{2}-a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+1\right)} me \frac{2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{a^{3}-a^{2}-a^{2}+a+2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Mahia ngā whakarea i roto o \left(a^{2}-a\right)\left(a-1\right)+2a^{2}.
\frac{a^{3}+a}{\left(a-1\right)\left(a^{2}+1\right)}
Whakakotahitia ngā kupu rite i a^{3}-a^{2}-a^{2}+a+2a^{2}.
\frac{a\left(a^{2}+1\right)}{\left(a-1\right)\left(a^{2}+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{a^{3}+a}{\left(a-1\right)\left(a^{2}+1\right)}.
\frac{a}{a-1}
Me whakakore tahi te a^{2}+1 i te taurunga me te tauraro.
\frac{a^{2}-a}{a^{2}+1}+\frac{2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Tauwehea te a^{3}-a^{2}+a-1.
\frac{\left(a^{2}-a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+1\right)}+\frac{2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a^{2}+1 me \left(a-1\right)\left(a^{2}+1\right) ko \left(a-1\right)\left(a^{2}+1\right). Whakareatia \frac{a^{2}-a}{a^{2}+1} ki te \frac{a-1}{a-1}.
\frac{\left(a^{2}-a\right)\left(a-1\right)+2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Tā te mea he rite te tauraro o \frac{\left(a^{2}-a\right)\left(a-1\right)}{\left(a-1\right)\left(a^{2}+1\right)} me \frac{2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{a^{3}-a^{2}-a^{2}+a+2a^{2}}{\left(a-1\right)\left(a^{2}+1\right)}
Mahia ngā whakarea i roto o \left(a^{2}-a\right)\left(a-1\right)+2a^{2}.
\frac{a^{3}+a}{\left(a-1\right)\left(a^{2}+1\right)}
Whakakotahitia ngā kupu rite i a^{3}-a^{2}-a^{2}+a+2a^{2}.
\frac{a\left(a^{2}+1\right)}{\left(a-1\right)\left(a^{2}+1\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{a^{3}+a}{\left(a-1\right)\left(a^{2}+1\right)}.
\frac{a}{a-1}
Me whakakore tahi te a^{2}+1 i te taurunga me te tauraro.