Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Tauwehe
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{a^{2}}{a+1}-\frac{a^{3}}{\left(a+1\right)^{2}}
Tauwehea te a^{2}+2a+1.
\frac{a^{2}\left(a+1\right)}{\left(a+1\right)^{2}}-\frac{a^{3}}{\left(a+1\right)^{2}}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+1 me \left(a+1\right)^{2} ko \left(a+1\right)^{2}. Whakareatia \frac{a^{2}}{a+1} ki te \frac{a+1}{a+1}.
\frac{a^{2}\left(a+1\right)-a^{3}}{\left(a+1\right)^{2}}
Tā te mea he rite te tauraro o \frac{a^{2}\left(a+1\right)}{\left(a+1\right)^{2}} me \frac{a^{3}}{\left(a+1\right)^{2}}, me tango rāua mā te tango i ō raua taurunga.
\frac{a^{3}+a^{2}-a^{3}}{\left(a+1\right)^{2}}
Mahia ngā whakarea i roto o a^{2}\left(a+1\right)-a^{3}.
\frac{a^{2}}{\left(a+1\right)^{2}}
Whakakotahitia ngā kupu rite i a^{3}+a^{2}-a^{3}.
\frac{a^{2}}{a^{2}+2a+1}
Whakarohaina te \left(a+1\right)^{2}.