Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a^{2}+4\left(\sqrt{15+3}\right)^{2}=36
Me whakarea ngā taha e rua o te whārite ki te 36, arā, te tauraro pātahi he tino iti rawa te kitea o 36,9.
a^{2}+4\left(\sqrt{18}\right)^{2}=36
Tāpirihia te 15 ki te 3, ka 18.
a^{2}+4\times 18=36
Ko te pūrua o \sqrt{18} ko 18.
a^{2}+72=36
Whakareatia te 4 ki te 18, ka 72.
a^{2}=36-72
Tangohia te 72 mai i ngā taha e rua.
a^{2}=-36
Tangohia te 72 i te 36, ka -36.
a=6i a=-6i
Kua oti te whārite te whakatau.
a^{2}+4\left(\sqrt{15+3}\right)^{2}=36
Me whakarea ngā taha e rua o te whārite ki te 36, arā, te tauraro pātahi he tino iti rawa te kitea o 36,9.
a^{2}+4\left(\sqrt{18}\right)^{2}=36
Tāpirihia te 15 ki te 3, ka 18.
a^{2}+4\times 18=36
Ko te pūrua o \sqrt{18} ko 18.
a^{2}+72=36
Whakareatia te 4 ki te 18, ka 72.
a^{2}+72-36=0
Tangohia te 36 mai i ngā taha e rua.
a^{2}+36=0
Tangohia te 36 i te 72, ka 36.
a=\frac{0±\sqrt{0^{2}-4\times 36}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 0 mō b, me 36 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 36}}{2}
Pūrua 0.
a=\frac{0±\sqrt{-144}}{2}
Whakareatia -4 ki te 36.
a=\frac{0±12i}{2}
Tuhia te pūtakerua o te -144.
a=6i
Nā, me whakaoti te whārite a=\frac{0±12i}{2} ina he tāpiri te ±.
a=-6i
Nā, me whakaoti te whārite a=\frac{0±12i}{2} ina he tango te ±.
a=6i a=-6i
Kua oti te whārite te whakatau.