Whakaoti mō a
a=\frac{b^{2}}{c}
b\neq 0\text{ and }c\neq 0
Whakaoti mō b (complex solution)
b=-\sqrt{a}\sqrt{c}
b=\sqrt{a}\sqrt{c}\text{, }a\neq 0\text{ and }c\neq 0
Whakaoti mō b
b=\sqrt{ac}
b=-\sqrt{ac}\text{, }\left(c<0\text{ and }a<0\right)\text{ or }\left(a>0\text{ and }c>0\right)
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
\frac { a ^ { 2 } + b ^ { 2 } } { a b } = \frac { a + c } { b }
Tohaina
Kua tāruatia ki te papatopenga
a^{2}+b^{2}=a\left(a+c\right)
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te ab, arā, te tauraro pātahi he tino iti rawa te kitea o ab,b.
a^{2}+b^{2}=a^{2}+ac
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te a+c.
a^{2}+b^{2}-a^{2}=ac
Tangohia te a^{2} mai i ngā taha e rua.
b^{2}=ac
Pahekotia te a^{2} me -a^{2}, ka 0.
ac=b^{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
ca=b^{2}
He hanga arowhānui tō te whārite.
\frac{ca}{c}=\frac{b^{2}}{c}
Whakawehea ngā taha e rua ki te c.
a=\frac{b^{2}}{c}
Mā te whakawehe ki te c ka wetekia te whakareanga ki te c.
a=\frac{b^{2}}{c}\text{, }a\neq 0
Tē taea kia ōrite te tāupe a ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}