Aromātai
\frac{2}{a}
Whakaroha
\frac{2}{a}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(a+b\right)c}{abc}+\frac{\left(b-c\right)a}{abc}+\frac{c-a}{ac}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o ab me bc ko abc. Whakareatia \frac{a+b}{ab} ki te \frac{c}{c}. Whakareatia \frac{b-c}{bc} ki te \frac{a}{a}.
\frac{\left(a+b\right)c+\left(b-c\right)a}{abc}+\frac{c-a}{ac}
Tā te mea he rite te tauraro o \frac{\left(a+b\right)c}{abc} me \frac{\left(b-c\right)a}{abc}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{ac+bc+ba-ca}{abc}+\frac{c-a}{ac}
Mahia ngā whakarea i roto o \left(a+b\right)c+\left(b-c\right)a.
\frac{bc+ba}{abc}+\frac{c-a}{ac}
Whakakotahitia ngā kupu rite i ac+bc+ba-ca.
\frac{b\left(a+c\right)}{abc}+\frac{c-a}{ac}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{bc+ba}{abc}.
\frac{a+c}{ac}+\frac{c-a}{ac}
Me whakakore tahi te b i te taurunga me te tauraro.
\frac{a+c+c-a}{ac}
Tā te mea he rite te tauraro o \frac{a+c}{ac} me \frac{c-a}{ac}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2c}{ac}
Whakakotahitia ngā kupu rite i a+c+c-a.
\frac{2}{a}
Me whakakore tahi te c i te taurunga me te tauraro.
\frac{\left(a+b\right)c}{abc}+\frac{\left(b-c\right)a}{abc}+\frac{c-a}{ac}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o ab me bc ko abc. Whakareatia \frac{a+b}{ab} ki te \frac{c}{c}. Whakareatia \frac{b-c}{bc} ki te \frac{a}{a}.
\frac{\left(a+b\right)c+\left(b-c\right)a}{abc}+\frac{c-a}{ac}
Tā te mea he rite te tauraro o \frac{\left(a+b\right)c}{abc} me \frac{\left(b-c\right)a}{abc}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{ac+bc+ba-ca}{abc}+\frac{c-a}{ac}
Mahia ngā whakarea i roto o \left(a+b\right)c+\left(b-c\right)a.
\frac{bc+ba}{abc}+\frac{c-a}{ac}
Whakakotahitia ngā kupu rite i ac+bc+ba-ca.
\frac{b\left(a+c\right)}{abc}+\frac{c-a}{ac}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{bc+ba}{abc}.
\frac{a+c}{ac}+\frac{c-a}{ac}
Me whakakore tahi te b i te taurunga me te tauraro.
\frac{a+c+c-a}{ac}
Tā te mea he rite te tauraro o \frac{a+c}{ac} me \frac{c-a}{ac}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{2c}{ac}
Whakakotahitia ngā kupu rite i a+c+c-a.
\frac{2}{a}
Me whakakore tahi te c i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}