Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(a+b\right)\left(a-b\right)}{6\times 2a}\times \frac{a^{2}+b^{2}}{3b^{2}}
Me whakarea te \frac{a+b}{6} ki te \frac{a-b}{2a} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{6\times 2a\times 3b^{2}}
Me whakarea te \frac{\left(a+b\right)\left(a-b\right)}{6\times 2a} ki te \frac{a^{2}+b^{2}}{3b^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{12a\times 3b^{2}}
Whakareatia te 6 ki te 2, ka 12.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
Whakareatia te 12 ki te 3, ka 36.
\frac{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
Whakamahia te āhuatanga tuaritanga hei whakarea te a+b ki te a-b ka whakakotahi i ngā kupu rite.
\frac{\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}}{36ab^{2}}
Whakaarohia te \left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{a^{4}-\left(b^{2}\right)^{2}}{36ab^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\frac{a^{4}-b^{4}}{36ab^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\frac{\left(a+b\right)\left(a-b\right)}{6\times 2a}\times \frac{a^{2}+b^{2}}{3b^{2}}
Me whakarea te \frac{a+b}{6} ki te \frac{a-b}{2a} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{6\times 2a\times 3b^{2}}
Me whakarea te \frac{\left(a+b\right)\left(a-b\right)}{6\times 2a} ki te \frac{a^{2}+b^{2}}{3b^{2}} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{12a\times 3b^{2}}
Whakareatia te 6 ki te 2, ka 12.
\frac{\left(a+b\right)\left(a-b\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
Whakareatia te 12 ki te 3, ka 36.
\frac{\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)}{36ab^{2}}
Whakamahia te āhuatanga tuaritanga hei whakarea te a+b ki te a-b ka whakakotahi i ngā kupu rite.
\frac{\left(a^{2}\right)^{2}-\left(b^{2}\right)^{2}}{36ab^{2}}
Whakaarohia te \left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right). Ka taea te whakareanga te panoni ki te rerekētanga o ngā pūrua mā te ture: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{a^{4}-\left(b^{2}\right)^{2}}{36ab^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.
\frac{a^{4}-b^{4}}{36ab^{2}}
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 2 me te 2 kia riro ai te 4.