Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(a+b\right)-3b\times 6a=3b-a
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6a, arā, te tauraro pātahi he tino iti rawa te kitea o 2a,6a.
3a+3b-3b\times 6a=3b-a
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te a+b.
3a+3b-18ba=3b-a
Whakareatia te -3 ki te 6, ka -18.
3a+3b-18ba+a=3b
Me tāpiri te a ki ngā taha e rua.
4a+3b-18ba=3b
Pahekotia te 3a me a, ka 4a.
4a-18ba=3b-3b
Tangohia te 3b mai i ngā taha e rua.
4a-18ba=0
Pahekotia te 3b me -3b, ka 0.
\left(4-18b\right)a=0
Pahekotia ngā kīanga tau katoa e whai ana i te a.
a=0
Whakawehe 0 ki te 4-18b.
a\in \emptyset
Tē taea kia ōrite te tāupe a ki 0.
3\left(a+b\right)-3b\times 6a=3b-a
Me whakarea ngā taha e rua o te whārite ki te 6a, arā, te tauraro pātahi he tino iti rawa te kitea o 2a,6a.
3a+3b-3b\times 6a=3b-a
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te a+b.
3a+3b-18ba=3b-a
Whakareatia te -3 ki te 6, ka -18.
3a+3b-18ba-3b=-a
Tangohia te 3b mai i ngā taha e rua.
3a-18ba=-a
Pahekotia te 3b me -3b, ka 0.
-18ba=-a-3a
Tangohia te 3a mai i ngā taha e rua.
-18ba=-4a
Pahekotia te -a me -3a, ka -4a.
\left(-18a\right)b=-4a
He hanga arowhānui tō te whārite.
\frac{\left(-18a\right)b}{-18a}=-\frac{4a}{-18a}
Whakawehea ngā taha e rua ki te -18a.
b=-\frac{4a}{-18a}
Mā te whakawehe ki te -18a ka wetekia te whakareanga ki te -18a.
b=\frac{2}{9}
Whakawehe -4a ki te -18a.