Whakaoti mō a
a\neq 0
b=\frac{2}{9}\text{ and }a\neq 0
Whakaoti mō b
b = \frac{2}{9} = 0.2222222222222222
a\neq 0
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { a + b } { 2 a } - 3 b = \frac { 3 b - a } { 6 a }
Tohaina
Kua tāruatia ki te papatopenga
3\left(a+b\right)-3b\times 6a=3b-a
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 6a, arā, te tauraro pātahi he tino iti rawa te kitea o 2a,6a.
3a+3b-3b\times 6a=3b-a
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te a+b.
3a+3b-18ba=3b-a
Whakareatia te -3 ki te 6, ka -18.
3a+3b-18ba+a=3b
Me tāpiri te a ki ngā taha e rua.
4a+3b-18ba=3b
Pahekotia te 3a me a, ka 4a.
4a-18ba=3b-3b
Tangohia te 3b mai i ngā taha e rua.
4a-18ba=0
Pahekotia te 3b me -3b, ka 0.
\left(4-18b\right)a=0
Pahekotia ngā kīanga tau katoa e whai ana i te a.
a=0
Whakawehe 0 ki te 4-18b.
a\in \emptyset
Tē taea kia ōrite te tāupe a ki 0.
3\left(a+b\right)-3b\times 6a=3b-a
Me whakarea ngā taha e rua o te whārite ki te 6a, arā, te tauraro pātahi he tino iti rawa te kitea o 2a,6a.
3a+3b-3b\times 6a=3b-a
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te a+b.
3a+3b-18ba=3b-a
Whakareatia te -3 ki te 6, ka -18.
3a+3b-18ba-3b=-a
Tangohia te 3b mai i ngā taha e rua.
3a-18ba=-a
Pahekotia te 3b me -3b, ka 0.
-18ba=-a-3a
Tangohia te 3a mai i ngā taha e rua.
-18ba=-4a
Pahekotia te -a me -3a, ka -4a.
\left(-18a\right)b=-4a
He hanga arowhānui tō te whārite.
\frac{\left(-18a\right)b}{-18a}=-\frac{4a}{-18a}
Whakawehea ngā taha e rua ki te -18a.
b=-\frac{4a}{-18a}
Mā te whakawehe ki te -18a ka wetekia te whakareanga ki te -18a.
b=\frac{2}{9}
Whakawehe -4a ki te -18a.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}