Aromātai
-\frac{2}{a-3}
Whakaroha
-\frac{2}{a-3}
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}-\frac{2}{a-4}
Whakawehe \frac{a+4}{a^{2}-6a+9} ki te \frac{a^{2}-16}{2a-6} mā te whakarea \frac{a+4}{a^{2}-6a+9} ki te tau huripoki o \frac{a^{2}-16}{2a-6}.
\frac{2\left(a-3\right)\left(a+4\right)}{\left(a-4\right)\left(a+4\right)\left(a-3\right)^{2}}-\frac{2}{a-4}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}.
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2}{a-4}
Me whakakore tahi te \left(a-3\right)\left(a+4\right) i te taurunga me te tauraro.
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(a-4\right)\left(a-3\right) me a-4 ko \left(a-4\right)\left(a-3\right). Whakareatia \frac{2}{a-4} ki te \frac{a-3}{a-3}.
\frac{2-2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
Tā te mea he rite te tauraro o \frac{2}{\left(a-4\right)\left(a-3\right)} me \frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2-2a+6}{\left(a-4\right)\left(a-3\right)}
Mahia ngā whakarea i roto o 2-2\left(a-3\right).
\frac{8-2a}{\left(a-4\right)\left(a-3\right)}
Whakakotahitia ngā kupu rite i 2-2a+6.
\frac{2\left(-a+4\right)}{\left(a-4\right)\left(a-3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{8-2a}{\left(a-4\right)\left(a-3\right)}.
\frac{-2\left(a-4\right)}{\left(a-4\right)\left(a-3\right)}
Unuhia te tohu tōraro i roto o 4-a.
\frac{-2}{a-3}
Me whakakore tahi te a-4 i te taurunga me te tauraro.
\frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}-\frac{2}{a-4}
Whakawehe \frac{a+4}{a^{2}-6a+9} ki te \frac{a^{2}-16}{2a-6} mā te whakarea \frac{a+4}{a^{2}-6a+9} ki te tau huripoki o \frac{a^{2}-16}{2a-6}.
\frac{2\left(a-3\right)\left(a+4\right)}{\left(a-4\right)\left(a+4\right)\left(a-3\right)^{2}}-\frac{2}{a-4}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}.
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2}{a-4}
Me whakakore tahi te \left(a-3\right)\left(a+4\right) i te taurunga me te tauraro.
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(a-4\right)\left(a-3\right) me a-4 ko \left(a-4\right)\left(a-3\right). Whakareatia \frac{2}{a-4} ki te \frac{a-3}{a-3}.
\frac{2-2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
Tā te mea he rite te tauraro o \frac{2}{\left(a-4\right)\left(a-3\right)} me \frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2-2a+6}{\left(a-4\right)\left(a-3\right)}
Mahia ngā whakarea i roto o 2-2\left(a-3\right).
\frac{8-2a}{\left(a-4\right)\left(a-3\right)}
Whakakotahitia ngā kupu rite i 2-2a+6.
\frac{2\left(-a+4\right)}{\left(a-4\right)\left(a-3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{8-2a}{\left(a-4\right)\left(a-3\right)}.
\frac{-2\left(a-4\right)}{\left(a-4\right)\left(a-3\right)}
Unuhia te tohu tōraro i roto o 4-a.
\frac{-2}{a-3}
Me whakakore tahi te a-4 i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}