Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}-\frac{2}{a-4}
Whakawehe \frac{a+4}{a^{2}-6a+9} ki te \frac{a^{2}-16}{2a-6} mā te whakarea \frac{a+4}{a^{2}-6a+9} ki te tau huripoki o \frac{a^{2}-16}{2a-6}.
\frac{2\left(a-3\right)\left(a+4\right)}{\left(a-4\right)\left(a+4\right)\left(a-3\right)^{2}}-\frac{2}{a-4}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}.
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2}{a-4}
Me whakakore tahi te \left(a-3\right)\left(a+4\right) i te taurunga me te tauraro.
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(a-4\right)\left(a-3\right) me a-4 ko \left(a-4\right)\left(a-3\right). Whakareatia \frac{2}{a-4} ki te \frac{a-3}{a-3}.
\frac{2-2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
Tā te mea he rite te tauraro o \frac{2}{\left(a-4\right)\left(a-3\right)} me \frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2-2a+6}{\left(a-4\right)\left(a-3\right)}
Mahia ngā whakarea i roto o 2-2\left(a-3\right).
\frac{8-2a}{\left(a-4\right)\left(a-3\right)}
Whakakotahitia ngā kupu rite i 2-2a+6.
\frac{2\left(-a+4\right)}{\left(a-4\right)\left(a-3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{8-2a}{\left(a-4\right)\left(a-3\right)}.
\frac{-2\left(a-4\right)}{\left(a-4\right)\left(a-3\right)}
Unuhia te tohu tōraro i roto o 4-a.
\frac{-2}{a-3}
Me whakakore tahi te a-4 i te taurunga me te tauraro.
\frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}-\frac{2}{a-4}
Whakawehe \frac{a+4}{a^{2}-6a+9} ki te \frac{a^{2}-16}{2a-6} mā te whakarea \frac{a+4}{a^{2}-6a+9} ki te tau huripoki o \frac{a^{2}-16}{2a-6}.
\frac{2\left(a-3\right)\left(a+4\right)}{\left(a-4\right)\left(a+4\right)\left(a-3\right)^{2}}-\frac{2}{a-4}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{\left(a+4\right)\left(2a-6\right)}{\left(a^{2}-6a+9\right)\left(a^{2}-16\right)}.
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2}{a-4}
Me whakakore tahi te \left(a-3\right)\left(a+4\right) i te taurunga me te tauraro.
\frac{2}{\left(a-4\right)\left(a-3\right)}-\frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o \left(a-4\right)\left(a-3\right) me a-4 ko \left(a-4\right)\left(a-3\right). Whakareatia \frac{2}{a-4} ki te \frac{a-3}{a-3}.
\frac{2-2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}
Tā te mea he rite te tauraro o \frac{2}{\left(a-4\right)\left(a-3\right)} me \frac{2\left(a-3\right)}{\left(a-4\right)\left(a-3\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{2-2a+6}{\left(a-4\right)\left(a-3\right)}
Mahia ngā whakarea i roto o 2-2\left(a-3\right).
\frac{8-2a}{\left(a-4\right)\left(a-3\right)}
Whakakotahitia ngā kupu rite i 2-2a+6.
\frac{2\left(-a+4\right)}{\left(a-4\right)\left(a-3\right)}
Me whakatauwehe ngā kīanga kāore anō i whakatauwehea i roto o \frac{8-2a}{\left(a-4\right)\left(a-3\right)}.
\frac{-2\left(a-4\right)}{\left(a-4\right)\left(a-3\right)}
Unuhia te tohu tōraro i roto o 4-a.
\frac{-2}{a-3}
Me whakakore tahi te a-4 i te taurunga me te tauraro.