Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{\left(a+4\right)a}{a\left(a+1\right)}-\frac{\left(a+1\right)\left(a+1\right)}{a\left(a+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+1 me a ko a\left(a+1\right). Whakareatia \frac{a+4}{a+1} ki te \frac{a}{a}. Whakareatia \frac{a+1}{a} ki te \frac{a+1}{a+1}.
\frac{\left(a+4\right)a-\left(a+1\right)\left(a+1\right)}{a\left(a+1\right)}
Tā te mea he rite te tauraro o \frac{\left(a+4\right)a}{a\left(a+1\right)} me \frac{\left(a+1\right)\left(a+1\right)}{a\left(a+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{a^{2}+4a-a^{2}-a-a-1}{a\left(a+1\right)}
Mahia ngā whakarea i roto o \left(a+4\right)a-\left(a+1\right)\left(a+1\right).
\frac{2a-1}{a\left(a+1\right)}
Whakakotahitia ngā kupu rite i a^{2}+4a-a^{2}-a-a-1.
\frac{2a-1}{a^{2}+a}
Whakarohaina te a\left(a+1\right).
\frac{\left(a+4\right)a}{a\left(a+1\right)}-\frac{\left(a+1\right)\left(a+1\right)}{a\left(a+1\right)}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a+1 me a ko a\left(a+1\right). Whakareatia \frac{a+4}{a+1} ki te \frac{a}{a}. Whakareatia \frac{a+1}{a} ki te \frac{a+1}{a+1}.
\frac{\left(a+4\right)a-\left(a+1\right)\left(a+1\right)}{a\left(a+1\right)}
Tā te mea he rite te tauraro o \frac{\left(a+4\right)a}{a\left(a+1\right)} me \frac{\left(a+1\right)\left(a+1\right)}{a\left(a+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{a^{2}+4a-a^{2}-a-a-1}{a\left(a+1\right)}
Mahia ngā whakarea i roto o \left(a+4\right)a-\left(a+1\right)\left(a+1\right).
\frac{2a-1}{a\left(a+1\right)}
Whakakotahitia ngā kupu rite i a^{2}+4a-a^{2}-a-a-1.
\frac{2a-1}{a^{2}+a}
Whakarohaina te a\left(a+1\right).