Whakaoti mō a
a\neq 0
Pātaitai
Polynomial
5 raruraru e ōrite ana ki:
\frac { a + 2 } { 2 a } = \frac { 1 } { a } + \frac { 1 } { 2 }
Tohaina
Kua tāruatia ki te papatopenga
a+2=2+2a\times \frac{1}{2}
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2a, arā, te tauraro pātahi he tino iti rawa te kitea o 2a,a,2.
a+2=2+a
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
a+2-a=2
Tangohia te a mai i ngā taha e rua.
2=2
Pahekotia te a me -a, ka 0.
\text{true}
Whakatauritea te 2 me te 2.
a\in \mathrm{R}
He pono tēnei mō tētahi a ahakoa.
a\in \mathrm{R}\setminus 0
Tē taea kia ōrite te tāupe a ki 0.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}