Tīpoka ki ngā ihirangi matua
Whakaoti mō a
Tick mark Image
Whakaoti mō b (complex solution)
Tick mark Image
Whakaoti mō b
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a\left(a+1\right)=a\left(a-1\right)+b\left(b+1\right)
Tē taea kia ōrite te tāupe a ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te ab, arā, te tauraro pātahi he tino iti rawa te kitea o b,a.
a^{2}+a=a\left(a-1\right)+b\left(b+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te a+1.
a^{2}+a=a^{2}-a+b\left(b+1\right)
Whakamahia te āhuatanga tohatoha hei whakarea te a ki te a-1.
a^{2}+a=a^{2}-a+b^{2}+b
Whakamahia te āhuatanga tohatoha hei whakarea te b ki te b+1.
a^{2}+a-a^{2}=-a+b^{2}+b
Tangohia te a^{2} mai i ngā taha e rua.
a=-a+b^{2}+b
Pahekotia te a^{2} me -a^{2}, ka 0.
a+a=b^{2}+b
Me tāpiri te a ki ngā taha e rua.
2a=b^{2}+b
Pahekotia te a me a, ka 2a.
\frac{2a}{2}=\frac{b\left(b+1\right)}{2}
Whakawehea ngā taha e rua ki te 2.
a=\frac{b\left(b+1\right)}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
a=\frac{b\left(b+1\right)}{2}\text{, }a\neq 0
Tē taea kia ōrite te tāupe a ki 0.