Aromātai
\frac{3}{a^{2}-1}
Whakaroha
\frac{3}{a^{2}-1}
Tohaina
Kua tāruatia ki te papatopenga
\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Tauwehea te a^{2}-a. Tauwehea te a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a\left(a-1\right) me a\left(a+1\right) ko a\left(a-1\right)\left(a+1\right). Whakareatia \frac{a+1}{a\left(a-1\right)} ki te \frac{a+1}{a+1}. Whakareatia \frac{a-1}{a\left(a+1\right)} ki te \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Tā te mea he rite te tauraro o \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} me \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Mahia ngā whakarea i roto o \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Whakakotahitia ngā kupu rite i a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Tauwehea te a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Tā te mea he rite te tauraro o \frac{4}{\left(a-1\right)\left(a+1\right)} me \frac{1}{\left(a-1\right)\left(a+1\right)}, me tango rāua mā te tango i ō raua taurunga. Tangohia te 1 i te 4, ka 3.
\frac{3}{a^{2}-1}
Whakarohaina te \left(a-1\right)\left(a+1\right).
\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Tauwehea te a^{2}-a. Tauwehea te a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a\left(a-1\right) me a\left(a+1\right) ko a\left(a-1\right)\left(a+1\right). Whakareatia \frac{a+1}{a\left(a-1\right)} ki te \frac{a+1}{a+1}. Whakareatia \frac{a-1}{a\left(a+1\right)} ki te \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Tā te mea he rite te tauraro o \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} me \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Mahia ngā whakarea i roto o \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Whakakotahitia ngā kupu rite i a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Tauwehea te a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Tā te mea he rite te tauraro o \frac{4}{\left(a-1\right)\left(a+1\right)} me \frac{1}{\left(a-1\right)\left(a+1\right)}, me tango rāua mā te tango i ō raua taurunga. Tangohia te 1 i te 4, ka 3.
\frac{3}{a^{2}-1}
Whakarohaina te \left(a-1\right)\left(a+1\right).
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}