Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Whakaroha
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Tauwehea te a^{2}-a. Tauwehea te a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a\left(a-1\right) me a\left(a+1\right) ko a\left(a-1\right)\left(a+1\right). Whakareatia \frac{a+1}{a\left(a-1\right)} ki te \frac{a+1}{a+1}. Whakareatia \frac{a-1}{a\left(a+1\right)} ki te \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Tā te mea he rite te tauraro o \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} me \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Mahia ngā whakarea i roto o \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Whakakotahitia ngā kupu rite i a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Tauwehea te a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Tā te mea he rite te tauraro o \frac{4}{\left(a-1\right)\left(a+1\right)} me \frac{1}{\left(a-1\right)\left(a+1\right)}, me tango rāua mā te tango i ō raua taurunga. Tangohia te 1 i te 4, ka 3.
\frac{3}{a^{2}-1}
Whakarohaina te \left(a-1\right)\left(a+1\right).
\frac{a+1}{a\left(a-1\right)}-\frac{a-1}{a\left(a+1\right)}-\frac{1}{a^{2}-1}
Tauwehea te a^{2}-a. Tauwehea te a^{2}+a.
\frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Ko te taurea pātahi iti rawa o a\left(a-1\right) me a\left(a+1\right) ko a\left(a-1\right)\left(a+1\right). Whakareatia \frac{a+1}{a\left(a-1\right)} ki te \frac{a+1}{a+1}. Whakareatia \frac{a-1}{a\left(a+1\right)} ki te \frac{a-1}{a-1}.
\frac{\left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Tā te mea he rite te tauraro o \frac{\left(a+1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)} me \frac{\left(a-1\right)\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}, me tango rāua mā te tango i ō raua taurunga.
\frac{a^{2}+a+a+1-a^{2}+a+a-1}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Mahia ngā whakarea i roto o \left(a+1\right)\left(a+1\right)-\left(a-1\right)\left(a-1\right).
\frac{4a}{a\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Whakakotahitia ngā kupu rite i a^{2}+a+a+1-a^{2}+a+a-1.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{a^{2}-1}
Me whakakore tahi te a i te taurunga me te tauraro.
\frac{4}{\left(a-1\right)\left(a+1\right)}-\frac{1}{\left(a-1\right)\left(a+1\right)}
Tauwehea te a^{2}-1.
\frac{3}{\left(a-1\right)\left(a+1\right)}
Tā te mea he rite te tauraro o \frac{4}{\left(a-1\right)\left(a+1\right)} me \frac{1}{\left(a-1\right)\left(a+1\right)}, me tango rāua mā te tango i ō raua taurunga. Tangohia te 1 i te 4, ka 3.
\frac{3}{a^{2}-1}
Whakarohaina te \left(a-1\right)\left(a+1\right).