Whakaoti mō a
a = -\frac{23}{5} = -4\frac{3}{5} = -4.6
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { a + 1 } { 2 } - \frac { 4 a + 1 } { 3 } = 4
Tohaina
Kua tāruatia ki te papatopenga
3\left(a+1\right)-2\left(4a+1\right)=24
Me whakarea ngā taha e rua o te whārite ki te 6, arā, te tauraro pātahi he tino iti rawa te kitea o 2,3.
3a+3-2\left(4a+1\right)=24
Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te a+1.
3a+3-8a-2=24
Whakamahia te āhuatanga tohatoha hei whakarea te -2 ki te 4a+1.
-5a+3-2=24
Pahekotia te 3a me -8a, ka -5a.
-5a+1=24
Tangohia te 2 i te 3, ka 1.
-5a=24-1
Tangohia te 1 mai i ngā taha e rua.
-5a=23
Tangohia te 1 i te 24, ka 23.
a=\frac{23}{-5}
Whakawehea ngā taha e rua ki te -5.
a=-\frac{23}{5}
Ka taea te hautanga \frac{23}{-5} te tuhi anō ko -\frac{23}{5} mā te tango i te tohu tōraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}