Tīpoka ki ngā ihirangi matua
Whakaoti mō Y
Tick mark Image
Whakaoti mō U
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\left(s+1\right)\left(s+2\right)Ys=U
Me whakarea ngā taha e rua o te whārite ki te Us\left(s+1\right)\left(s+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o Us,s\left(s+1\right)\left(s+2\right).
\left(s^{2}+3s+2\right)Ys=U
Whakamahia te āhuatanga tuaritanga hei whakarea te s+1 ki te s+2 ka whakakotahi i ngā kupu rite.
\left(s^{2}Y+3sY+2Y\right)s=U
Whakamahia te āhuatanga tohatoha hei whakarea te s^{2}+3s+2 ki te Y.
Ys^{3}+3Ys^{2}+2Ys=U
Whakamahia te āhuatanga tohatoha hei whakarea te s^{2}Y+3sY+2Y ki te s.
\left(s^{3}+3s^{2}+2s\right)Y=U
Pahekotia ngā kīanga tau katoa e whai ana i te Y.
\frac{\left(s^{3}+3s^{2}+2s\right)Y}{s^{3}+3s^{2}+2s}=\frac{U}{s^{3}+3s^{2}+2s}
Whakawehea ngā taha e rua ki te 3s^{2}+s^{3}+2s.
Y=\frac{U}{s^{3}+3s^{2}+2s}
Mā te whakawehe ki te 3s^{2}+s^{3}+2s ka wetekia te whakareanga ki te 3s^{2}+s^{3}+2s.
Y=\frac{U}{s\left(s+1\right)\left(s+2\right)}
Whakawehe U ki te 3s^{2}+s^{3}+2s.