Whakaoti mō Y
Y=\frac{U}{s\left(s+1\right)\left(s+2\right)}
U\neq 0\text{ and }s\neq 0\text{ and }s\neq -1\text{ and }s\neq -2
Whakaoti mō U
U=Ys\left(s+1\right)\left(s+2\right)
s\neq 0\text{ and }s\neq -2\text{ and }s\neq -1\text{ and }Y\neq 0
Tohaina
Kua tāruatia ki te papatopenga
\left(s+1\right)\left(s+2\right)Ys=U
Me whakarea ngā taha e rua o te whārite ki te Us\left(s+1\right)\left(s+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o Us,s\left(s+1\right)\left(s+2\right).
\left(s^{2}+3s+2\right)Ys=U
Whakamahia te āhuatanga tuaritanga hei whakarea te s+1 ki te s+2 ka whakakotahi i ngā kupu rite.
\left(s^{2}Y+3sY+2Y\right)s=U
Whakamahia te āhuatanga tohatoha hei whakarea te s^{2}+3s+2 ki te Y.
Ys^{3}+3Ys^{2}+2Ys=U
Whakamahia te āhuatanga tohatoha hei whakarea te s^{2}Y+3sY+2Y ki te s.
\left(s^{3}+3s^{2}+2s\right)Y=U
Pahekotia ngā kīanga tau katoa e whai ana i te Y.
\frac{\left(s^{3}+3s^{2}+2s\right)Y}{s^{3}+3s^{2}+2s}=\frac{U}{s^{3}+3s^{2}+2s}
Whakawehea ngā taha e rua ki te 3s^{2}+s^{3}+2s.
Y=\frac{U}{s^{3}+3s^{2}+2s}
Mā te whakawehe ki te 3s^{2}+s^{3}+2s ka wetekia te whakareanga ki te 3s^{2}+s^{3}+2s.
Y=\frac{U}{s\left(s+1\right)\left(s+2\right)}
Whakawehe U ki te 3s^{2}+s^{3}+2s.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}