Tīpoka ki ngā ihirangi matua
Whakaoti mō Y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

s\left(s+1\right)\left(s+2\right)Ys=x_{s}
Me whakarea ngā taha e rua o te whārite ki te sx_{s}\left(s+1\right)\left(s+2\right), arā, te tauraro pātahi he tino iti rawa te kitea o x_{s},s\left(s+1\right)\left(s+2\right).
\left(s^{2}+s\right)\left(s+2\right)Ys=x_{s}
Whakamahia te āhuatanga tohatoha hei whakarea te s ki te s+1.
\left(s^{3}+3s^{2}+2s\right)Ys=x_{s}
Whakamahia te āhuatanga tuaritanga hei whakarea te s^{2}+s ki te s+2 ka whakakotahi i ngā kupu rite.
\left(s^{3}Y+3s^{2}Y+2sY\right)s=x_{s}
Whakamahia te āhuatanga tohatoha hei whakarea te s^{3}+3s^{2}+2s ki te Y.
Ys^{4}+3Ys^{3}+2Ys^{2}=x_{s}
Whakamahia te āhuatanga tohatoha hei whakarea te s^{3}Y+3s^{2}Y+2sY ki te s.
\left(s^{4}+3s^{3}+2s^{2}\right)Y=x_{s}
Pahekotia ngā kīanga tau katoa e whai ana i te Y.
\frac{\left(s^{4}+3s^{3}+2s^{2}\right)Y}{s^{4}+3s^{3}+2s^{2}}=\frac{x_{s}}{s^{4}+3s^{3}+2s^{2}}
Whakawehea ngā taha e rua ki te s^{4}+3s^{3}+2s^{2}.
Y=\frac{x_{s}}{s^{4}+3s^{3}+2s^{2}}
Mā te whakawehe ki te s^{4}+3s^{3}+2s^{2} ka wetekia te whakareanga ki te s^{4}+3s^{3}+2s^{2}.
Y=\frac{x_{s}}{\left(s+1\right)\left(s+2\right)s^{2}}
Whakawehe x_{s} ki te s^{4}+3s^{3}+2s^{2}.