Whakaoti mō R
R=18-\frac{3}{x}
x\neq 0
Whakaoti mō x
x=-\frac{3}{R-18}
R\neq 18
Graph
Tohaina
Kua tāruatia ki te papatopenga
Rx+3=18x
Whakareatia ngā taha e rua o te whārite ki te 3.
Rx=18x-3
Tangohia te 3 mai i ngā taha e rua.
xR=18x-3
He hanga arowhānui tō te whārite.
\frac{xR}{x}=\frac{18x-3}{x}
Whakawehea ngā taha e rua ki te x.
R=\frac{18x-3}{x}
Mā te whakawehe ki te x ka wetekia te whakareanga ki te x.
R=18-\frac{3}{x}
Whakawehe 18x-3 ki te x.
Rx+3=18x
Whakareatia ngā taha e rua o te whārite ki te 3.
Rx+3-18x=0
Tangohia te 18x mai i ngā taha e rua.
Rx-18x=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
\left(R-18\right)x=-3
Pahekotia ngā kīanga tau katoa e whai ana i te x.
\frac{\left(R-18\right)x}{R-18}=-\frac{3}{R-18}
Whakawehea ngā taha e rua ki te R-18.
x=-\frac{3}{R-18}
Mā te whakawehe ki te R-18 ka wetekia te whakareanga ki te R-18.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}