Tīpoka ki ngā ihirangi matua
Whakaoti mō C
Tick mark Image
Whakaoti mō P
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2Pn_{2}=3C\left(n+12\right)
Tē taea kia ōrite te tāupe C ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2C\left(n+12\right), arā, te tauraro pātahi he tino iti rawa te kitea o C\left(n+12\right),2.
2Pn_{2}=3Cn+36C
Whakamahia te āhuatanga tohatoha hei whakarea te 3C ki te n+12.
3Cn+36C=2Pn_{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(3n+36\right)C=2Pn_{2}
Pahekotia ngā kīanga tau katoa e whai ana i te C.
\frac{\left(3n+36\right)C}{3n+36}=\frac{2Pn_{2}}{3n+36}
Whakawehea ngā taha e rua ki te 3n+36.
C=\frac{2Pn_{2}}{3n+36}
Mā te whakawehe ki te 3n+36 ka wetekia te whakareanga ki te 3n+36.
C=\frac{2Pn_{2}}{3\left(n+12\right)}
Whakawehe 2Pn_{2} ki te 3n+36.
C=\frac{2Pn_{2}}{3\left(n+12\right)}\text{, }C\neq 0
Tē taea kia ōrite te tāupe C ki 0.
2Pn_{2}=3C\left(n+12\right)
Me whakarea ngā taha e rua o te whārite ki te 2C\left(n+12\right), arā, te tauraro pātahi he tino iti rawa te kitea o C\left(n+12\right),2.
2Pn_{2}=3Cn+36C
Whakamahia te āhuatanga tohatoha hei whakarea te 3C ki te n+12.
2n_{2}P=3Cn+36C
He hanga arowhānui tō te whārite.
\frac{2n_{2}P}{2n_{2}}=\frac{3C\left(n+12\right)}{2n_{2}}
Whakawehea ngā taha e rua ki te 2n_{2}.
P=\frac{3C\left(n+12\right)}{2n_{2}}
Mā te whakawehe ki te 2n_{2} ka wetekia te whakareanga ki te 2n_{2}.