Whakaoti mō C
C=\frac{2Pn_{2}}{3\left(n+12\right)}
n\neq -12\text{ and }n_{2}\neq 0\text{ and }P\neq 0
Whakaoti mō P
P=\frac{3C\left(n+12\right)}{2n_{2}}
n_{2}\neq 0\text{ and }C\neq 0\text{ and }n\neq -12
Pātaitai
Linear Equation
5 raruraru e ōrite ana ki:
\frac { P ( n 2 ) } { C ( n + 12 ) } = \frac { 3 } { 2 }
Tohaina
Kua tāruatia ki te papatopenga
2Pn_{2}=3C\left(n+12\right)
Tē taea kia ōrite te tāupe C ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Me whakarea ngā taha e rua o te whārite ki te 2C\left(n+12\right), arā, te tauraro pātahi he tino iti rawa te kitea o C\left(n+12\right),2.
2Pn_{2}=3Cn+36C
Whakamahia te āhuatanga tohatoha hei whakarea te 3C ki te n+12.
3Cn+36C=2Pn_{2}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(3n+36\right)C=2Pn_{2}
Pahekotia ngā kīanga tau katoa e whai ana i te C.
\frac{\left(3n+36\right)C}{3n+36}=\frac{2Pn_{2}}{3n+36}
Whakawehea ngā taha e rua ki te 3n+36.
C=\frac{2Pn_{2}}{3n+36}
Mā te whakawehe ki te 3n+36 ka wetekia te whakareanga ki te 3n+36.
C=\frac{2Pn_{2}}{3\left(n+12\right)}
Whakawehe 2Pn_{2} ki te 3n+36.
C=\frac{2Pn_{2}}{3\left(n+12\right)}\text{, }C\neq 0
Tē taea kia ōrite te tāupe C ki 0.
2Pn_{2}=3C\left(n+12\right)
Me whakarea ngā taha e rua o te whārite ki te 2C\left(n+12\right), arā, te tauraro pātahi he tino iti rawa te kitea o C\left(n+12\right),2.
2Pn_{2}=3Cn+36C
Whakamahia te āhuatanga tohatoha hei whakarea te 3C ki te n+12.
2n_{2}P=3Cn+36C
He hanga arowhānui tō te whārite.
\frac{2n_{2}P}{2n_{2}}=\frac{3C\left(n+12\right)}{2n_{2}}
Whakawehea ngā taha e rua ki te 2n_{2}.
P=\frac{3C\left(n+12\right)}{2n_{2}}
Mā te whakawehe ki te 2n_{2} ka wetekia te whakareanga ki te 2n_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}